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In this paper we develop the two-equation model for solute transport and adsorption in
a two-region model of a mechanically and chemically heterogeneous porous medium.
The closure problem is derived and the coefficients in both the one- and two-equation
models are determined on the basis of the Darcy-scale parameters. Numerical
experiments are carried out for a stratified system at the aquifer scale, and the results
are compared with the one-equation model presented in Part IV and the two-equation
model developed in this paper. Good agreement between the two-equation model and
the numerical experiments is obtained. In addition, the two-equation model is used, in
conjunction with a moment analysis, to derive a one-equation, non-equilibrium model
that is valid in the asymptotic regime. Numerical results are used to identify the
asymptotic regime for the one-equation, non-equilibrium model998 Elsevier

Science Limited.
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NOMENCLATURE {{c,"}

Ay = A, /V,, interfacial area per unit volume, Th

A = area of they—« interface contained in the  {(c,)"}"
averaging volumey/,, m?

Ags = A5, area of the8—o interface contained in the  {{c)}
averaging volumey/, m?

A, = A, area of the boundary between thend ¢,
w-regions contained with the large-scale averag-
ing volume,?/.., m? {{c.)}

b, vector field that map¥{(c,)"}" ontoc,, m.

(o vector field that map¥{{c,)*}“ ontoc,, m. {{c.)}¢

D e vector field that map¥{{c)“}“ onto¢,, m.

by vector field that map¥{c,)"}" ontoc,, m. C

c, point concentration in thg-phase, mol m=.

c,)" Darcy-scale intrinsic average concentration for DZ

the 8—o system in they-region, mol n2,
(c)* Darcy-scale intrinsic average concentration for D]
the 8—o system in thev-region, mol m>.
Dy,
*Corresponding author.
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n-region superficial average concentration,
mol m~3.

= ¢,71{(cn)" }, p-region intrinsic average concen-
tration, mol n>.

= ¢,{{c,)"}" + ¢,{{c,)*}, large-scale intrinsic
average concentration, molth

= (c,)"—{{c,)"}", spatial deviation concentra-
tion for they-region, mol m.

w-region superficial average concentration,
mol m~3,

= o, M)}, w-region intrinsic average
concentration, mol .

= (c,)* — {{c,)*}", spatial deviation concentra-
tion for the w-region, mol m.

dispersion tensor for th@—o system in the
n-region, nfs™%.

dispersion tensor for the—o system in the
w-region, nfs™%,

dominant dispersion tensor for theregion trans-
port equation, rfs ..
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coupling dispersion tensor for thgeregion trans-

port equation, rfs 2.

dominant dispersion tensor for theregion trans-

port equation, rfs .

coupling dispersion tensor for theregion trans-

port equation, s 2.

large-scale, one-equation model dispersion

tensor, ms™*.

gravitational acceleration vector, m%s

magnitude of the gravitational
vector, m 2.

unit tensor

=dF/oc, =aF/xc,)’, adsorption
coefficient, m.

acceleration

equilibrium

= a,Kefe,, dimensionless adsorption equilib-

rium coefficient for thes-region.

= [(e,a.,),/€,10F/c,)", dimensionless equilib-
a'Y n=n M

rium coefficient for they-region.

= [(e,2,,)/€,10F/(c,)’, dimensionless equilib-

rium coefficient for thew-region.
i =1,2,3, lattice vectors, m.

length scale for thg-region, m.
length scale for the-region, m.

length scale for the region averaged concentra-

tions, m.
aquifer length scale, m.

length scale of the aquifer heterogeneities, m.
= — N, unit normal vector directed from the

n-region towards thes-region.

radius of the averaging volumel/,, for the

o-region, m.

radius of the averaging volume), for the 3—o

system, m.

scalar that map$(c,)”}* — {{c,)"}" ontoc,.
scalar that map$(c,)”}* — {{c,)"}" ontoc,,.
radius of the averaging volume’,,, for the n—w

system, m.
time, s.

Darcy-scale, superficial average velocity in the

n-region, m s,

intrinsic regional average velocity in tigeregion,

ms

=¢,{(Vg),}", superficial regional average

velocity in then-region, m s*,

=(vg), — {{vg),}", n-region spatial deviation

velocity, ms™.

Darcy-scale, superficial average velocity in the

w-region, ms™.

intrinsic regional average velocity in theregion,

mst

=¢,{{vg),}*, superficial regional average

velocity in thew-region, m s*.

={Vg), — {{Vp),}“, w-region spatial deviation

velocity, ms™.
= qon{(VB)n }7] + P {(Vf)’)w }wy
superficial average velocity, ms

large-scale,

V, volume of they-region contained in the averaging
volume, 7., m.

V., volume of thew-region contained in the averaging
volume,?.,, m.

Ve Iarage—scale averaging volume for thew system,
m”.

Greek symbols

o* mass exchange coefficient for thg-w
system, s.

€ = eg + €., total porosity for theG—o
system.

€y = eg, + (e,€,), total porosity for then-
region.

€ = €5, + (€,€,)., total porosity for thes-n.

{e} = @€, + ¢ .£, large-scale average porosity.

{¢A+{K}) =¢0+%,)e,+e,(1+%K,)e,, large-scale
average capacitance factor.

o, =1 — ¢,, volume fraction of the-region.

Do =1 — ¢,, volume fraction of thes-region.

1 INTRODUCTION

Dispersion in heterogeneous media has received a great
deal of attention from a variety of scientists who are con-
cerned with mass transport in geological formations. It is
commonly accepted that dispersion through natural systems
such as aquifers and reservoirs involves many different
length scales, from the pore scale to the field scale. If one
considers the solute transport in such formations, these
multiple scales may lead to anomalous and non-Fickian
dispersion at the field scate? Here we need to be precise
and note thainomalous dispersiorefers to the interpre-
tation of field-scale data that does not fit the response of
a field-scale homogeneous representation. Similarly, the
existence of multiple scales has been related to the observa-
tion that dispersivity is field-scale dependent (see a review
by Gelhar et al®), and the theoretical implications of
this idea have been discussed extensi¥€l\Clearly, a
field-scale description calls for a representation in terms
of a heterogeneous domain, and we adopt this point of
view in this paper.

1.1 Hierarchical systems

A schematic representation of the problem under considera-
tion is illustrated in Fig. 1. While many intermediate scales
could be incorporated into the analysis, this study is limited
to four typical scales that can be described as follows:
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Fig. 2. Two-region model of a heterogeneous porous medium.

Y - phase

/ disparate, one is confronted with the problem of evolving
} > heterogeneitie$.
/

K -region
Q In this study we assume that the macropore scale,
the Darcy scale and the local heterogeneity scale are con-
veniently separated. This assumption was also imposed on
the analysis presented in Part®Vand there it led to a
Darcy-scale representation of the dispersion process. The
analysis required, among other constraints, that

Fig. 1. Averaging volumes in a hierarchical porous medium.
9 ong P b, <1y < g, by < 1o < 4y, L @)

In the multiple-scale problem under consideration in this
1. the macropore scale, in which averaging takes place paper, Darcy-scale properties are point-dependent, and

over the volumeV/ ; there is a need for a large-scale description. It is generally
2. the Darcy scale, in which averaging takes place over assumed'® that local heterogeneity-scale permeability
the volume?/; variations are ‘stationary’. In other words, gradients of
3. the local heterogeneity scale, in which averaging the large-scale averaged quantities, which are characteristic
takes place over the volum@,; of the regional variations, may be assumed to have negli-
4. the reservoir- or aquifer-scale heterogeneities, which gible impact on the change-of-scale problem for character-
have been identified by the length scalgin Fig. 1; istic lengths equivalent to the large-scale averaging volume

no averaging volume has been associated with this represented by the subscript in Fig. 1. Based on this
length scale since the governing equations will be assumption, and provided that the following length-scale
solved numerically at this scale. constraints are satisfied:

As we suggested in Part fy many applications will Ol <R, <Ly=L @)
require the addition of a micropore scale when the
k-region illustrated in Fig. 1 contains micropores, and there is some possibility that a large-scale description exists
many realistic systems may contain other intermediate for the large-scale dispersion process. Here, we mention
length scales either within the—o system or within the  thepossibleexistence of an averaged description to remind
heterogeneities associated with the averaging voluine the reader that process-dependent scales are involved in the
When these length scales are disparate, the method ofanalysis, and this may lead to conditions that do not permit
volume averaging can be used to carry information about the development of closed-form volume-averaged transport
the physical processes from a smaller length scale to aequations.
larger one, and eventually to the scale at which the final ~ Within this framework, we indicated in Part fvhow a
analysis is performed. When the length scales are notlocal heterogeneity-scale equilibrium dispersion equation
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could be derived from the Darcy-scale problem provided term, i.e. in the case of local mechanical non-equilibrium,
that certain length and time scales constraints were fulfilled. and to an estimate of the diffusive part that resembles
In this paper,we remove these latter constrainend we previously proposed estimates in the case of mobile—
present an analysis leading to a large-scale, non-equilibriumimmobile systems. It should be noted that the model of
model for solute dispersion in heterogeneous porous media.Gerke and van Genucht&h accounts for variably
The removal of these constraints naturally leads to a bettersaturated porous media, a case that is beyond the scope
description of the process, and this is clearly demonstratedof this paper.
in our comparison between theory and numerical In this paper, we propose a general formulation of these
experiments. The penalty that one pays for this improved two-equation models using the method of large-scale
description is the increased number of effective coefficients averaging. We obtain amxplicit relationship between
that appear in the two-equation model. If laboratory the local scale structure and the large-scale equations,
experiments are required in order to determine these suitable for predictions of large-scale properties, which
additional coefficients, one is confronted with an extremely incorporates both coupled dispersive and diffusive
difficult task; however, in our theoretical development all contributions. Finally, this methodology is illustrated in
the coefficients can be determined on the basis of a single,the case of dispersion in a stratified system for which
representative unit cell. This means that all the coef- we compare the theory both with numerical experiments
ficients in the large-scale averaged equations are self-and with the non-equilibrium, one-equation model of
consistent and based on a single model of the local Marle et al?*
heterogeneities. The Darcy-scale process of solute transport with adsorp-
The large-scale model that results from our analysis tion in then—w system shown in Fig. 2 is given by
features large-scale properties which are point-dependent
with a characteristic length scale,y, describing the a<c >n
regional heterogeneities. These regional heterogeneities 6,,(1+?(T,)TZ+V-(<V5>,,<C,,>">
are incorporated into any field-scale numerical description.

They will certainly contribute to anomalous, non-Fickian =V:(D;-V(c,)") 3
field-scale behaviour, but this behaviour will be taken care
of by the field-scale calculations and the large-scale B.C.1 <Cn>'7 - <Cw>°’, atA,, (4)

averaged transport equations.

B.C2 —ny((vs), ()" - By ¥(e,)")

= (V)6 — DIV (e,)°),

Within this multiple-scale scheme, we focus our attention atA,, (5)

on the large-scale averaging volume illustrated in Fig. 2 and

thus restrict the analysis to a two-region model of a hetero- ©

geneous porous medium. It is important to understand that ¢ ]__|_y<w) M+V.(<V6> <cw>°") =V-(DZ-V<cw>“)

the general theory is easily extended to systems containing at ¢

many distinct regionsand an example of this is given by (6)
Ahmadi and Quintar{'}. Systems of the type illustrated in  Here X, and X, represent the Darcy-scale equilibrium
Fig. 2 are characterized by an intense advection in the moreadsorption coefficients, which may be non-linear functions
permeable region, while a more diffusive process takes of the concentrationsic,)” and (c,)*. In addition to the
place in the less permeable region. Observations of manysolute transport equations, we shall need to make use of
similar systems, often referred to as systems with stagnantthe two Darcy-scale continuity equations that take the
regions or mobile—immobile regions, have been reported in form

the literature (see reviews'). The expected large-scale

behaviour is characterized by large-scale dispersion with V(vg), =0 (7a)
retardation caused by the exchange of mass between the !

different zones. Models proposed for describing solute

transport in such cases correspond to the introduction of a V-(v > —0 (7b)
retardation factorinthe dispersion equation, oratwo-equation Ble

model for the mobile and immobile regiofis?}(see alsothe  along with the boundary condition for the normal compo-
reviews cited abové13. Extensions of these models have nent of the velocity, which is given By2°

been proposed for mobile water in both regions (Skepp

al.? forthe case of smallinteraction betweenthetworegions,  B.C.3  n,,-(vg), =n,,(Vg),, atA,, (8)
and Gerke and van Genuchtén In the paper by Gerke and

van Genuchten, the solute inter-porosity exchange term isin Part IV® the region-average transport equations were
related intuitively to the water inter-porosity exchange developed, and thsuperficialaverage forms are given by

1.2 Large-scale averaging
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n-region:
n
often)"}
n n n
enl + FHy)ey EYR V'[q’n{<vﬁ>n} {ten)] ] =
accumulation and adsorption large-scale convection
- V. {D*}n° V{( ),]}f} + 1 . . D* .vé
= n ?nVilen % np,CndA | + { T].Vcn} -
Av]w
large-scale diffusion
~ ~ 1N 1 *
- V-(q)n{vﬁncn} ) - 'GZ nnw-<(v6)q(cn>" - Dn'V<Cn>n)dA
large-scale dispersion Ane
inter-region flux
(9a)
w-region:
w
3{(cy)} o w
eoll + o )ow e + T aufop} )] -
) accumulation and adsorption N large-scale convection
* 1w () 1 ~ ~* ~
= v-[{DL} | 9uV{(cu)?} + %J-nwncwdA + {Dw-ch} -
va]
large-scale diffusion
-~ ~ w 1 w * w
=V Qo {Vauls] = | e (VR lew)® = DG Ve, )?)dA
) large-scale dispersion A
inrer-re‘g:fon Slux (9b)

In our study of the one-equation model presented in Part w-region:

IV, we made use of the single, large-scale continuity

equation; however, in the analysis of mass transport _ ij _ _

processes using the two-equation model, we shall need the v {<VB>‘°} + Ve Awn“" <Vﬁ>‘° dA=0 (100)
regional forms of the two continuity equations. These can

be expressed as: Because the regional velocities are not solenoidal, as are
the Darcy-scale velocities contained in egns (7), one must
n-region: take special care with the various forms of the regional

continuity equations.
In egns (9), we see various large-scale terms such as

V-{{Vg),} + q/ij Nyo-(Vg), dA=0 (10a)  o{(c,)"}"et in ean (9a) ande,{(vs), }*{{c.)"}" in
w J A eqgn (9b), and we see other terms suchngg, andvg,c,
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that involve thespatial deviation quantitiesin addition, tensor:

the inter-region_flux is specified entirely |£1 terms of the D] = {D:}}n*'ﬁ; (13)
Darcy-scale variablesuch as(vs), and(c, ). In the fol- _ o _

lowing section we shall develop the closure problem which When this decomposition is used with eqn (12), we can
will allow us to determine the diffusive terms such as €xpress the first term on the right-hand side as

D, .Vc,} and the dispersive terms such &§,,c,1". 1 #

(D, V) P 4.0 ) [ e e Dy Vi) dA=
More importantly, we shall develop a representation for Voo J A

the inter-region flux that is determined entirely by the 1

- . T M, VAL

closure problem. This means that the representation for ¢/ J%n"w ((VB)"{(CW) J {D"} Vite,)}

the inter-region flux is limited by all the simplifications -

that are made in development of the closure problem. + D,,-V{(c,,)"}”) dA (1%

The large-scale averaged quantities can be removed from
2 CLOSURE PROBLEM the first two terms on the right-hand side of eqn (14); how-
ever, we shall leave the gradient of the large-scale average
In the development of a one-equation model, one addsconcentration inside the third term to obtain
egns (9a) and (9b) to obtain a single transport equation in 1
which the inter-region flux terms cancel. In that case, the 7 J Ny ((Ve)y (4C,)" " — D;-V{{c,)"}") dA
closure problem is used only to determine the effective w J Ao

coefficients associated with diffusion and dispersion. For 1 J dA -

the two-equation model under consideration here, the =[ry_w Am”nw'(Vﬁ% }{(c,,)}

closure problem completely determines tifienctional

form of the inter-region flux and the effective coefficients — {i J n,, dA} {D;V Vi,

which appear in the representation of that flux. Closure Voo JA, ! !

problems can be developed in a relatively general manner; 1 -

however, the development of mcal closure problem - [q/—x JAWHW'DW'V{(C”)"}" dA} (15

requires the use of a spatially periodic model. This means
that some very specific simplifications will be imposed on One can show that the first term on the right-hand side
our representation for the inter-region flux and for the large- Of this result is zero for a spatially periodic system.
scale dispersion; however, these simplifications are not This occurs because the periodicity condition for the
imposed on the other terms in eqns (9a) and (9b). velocity,

Periodicity :  (vg),(r + €)= (Vvg),(r), i=1,2,3
2.1 Inter-region flux

(16)
In the development of a two-equation model, we need &llows us to write
to represent the inter-region flux terms in a useful form, 1 dA— 1 dA
and this means decomposing that flux into large-scale 77 Awnnw'<vﬁ>n =7 Amnnw'<vﬁ>n
gquantities and spatial deviation quantities. Directing our 1
attention to theq—.r(_aglon transport equation, we make use + o J nne'<VB>n dA 17
of the decomposition o J A
eV = {{c VN 4¢ 11 in which Aqe represents the area of entrances and egits.for
(o) ={(e)"}" +¢, (1) the y-region contained in a unit cell of a spatially periodic
in order to express the inter-region flux as porous medium. Use of the divergence theorem and eqn (7)

allows us to express eqgn (17) as

1 1y 7
7 JAﬂwnnw-(<vB>n<Cn> D,-V(c,) ) dA 77130 JAWn"I‘*’.<V6>7’ dA— q/im JVWV.<VB>T’ dv=0 (18)

1 U * n
. JAﬂwnnw'(<V6>n{<Cn> }— DW'V{<C’7> }n) dA and use of this result with eqn (15) leads to the form
1 . 1 #
+ry—wj%n,,w-(<v6>ncn—o,,-vcn) dA (12 %J&wnw-(<vﬁ>n{<cn>"}"—DW-V{<cn>"}") dA
The second term on the right-hand side of this result is in a 1 J "~ '
) . . . =—|— dA|-{D;}"V
convenient form for use with egn (9a) since the unit cell {"l/ Awn"‘” ] {05} v{(e,)"}
closure calculations will provide us with values for both 1 ‘
(vg), andD;; however, we need to consider carefully how — = J n -6*-V{<c )3T dA (19
. . . {V:x: Anw nw n N
we treat the first term. In the derivation of egn (9a) we

made use of the following decomposition for the dispersion Considering the first term on the right-hand side of this
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result, we make use of the averaging theorem to obtain inter-region flux according to

1 N Ul 1 *
- [% JAM% dA} {D,}"-V{(c,)"}" o j%nm.(<vﬁ>n<cﬂ>n -D;V(c,)") dA
=Ve,{D,}"V{{c,)"}’ (20 1 J , .
= : ¢, —D,-v¢,— D,V 1T dA
For a spatially periodic systenVe, is zero and eqn (20) Voo Anwn"‘” <<Vﬁ>"c’” 2'Ve, =Dy V{(e)"} )
allows us to express eqgn (19) as (22)
1 -
v JAn nnw-(<v5>n{<cn>”}" - Dﬂ-V{<cn>"}") dA Substitution of this result into eqgn (9a) leads to a form of
o the large-scale average transport equation that is ready to
— _ [q/_lw JAU nnw-ﬁi-V{<cn>"}” dA} (21) receive results from the closure problem.
We are now ready to return to eqn (12) and express that?n-region:
ey}
eoft + o, KL v {onftvpal "]
accumulation and adsorption large-scale convection

= V{05 @qv e} + 73— anwéndA + {B%-ve }| -
A

nw

large-scale diffusion

~ ~ 1M 1 -~ * ~ ~*
- v.(%{vﬁqcn} ) - %J'n"lm.(<vﬁ>rlcﬁ - D} V&, - Dq~v{(cq)n}“)dA

large-scale dispersion A

(23a)

inter-region flux

Here we should note that every term in this result is either
a large-scale average quantity or a spatial deviation
quantity except forthe Darcy-scale velocity{vg),. This
Darcy-scale quantity has not been decomposed like all
the other terms, because it will be available to us directly
by solution of the Darcy-scale mass and momentum
equations for a unit cell in a spatially periodic model of
a heterogeneous porous medium. The analogous result
for the w-region can be obtained from eqgn (9b) and is
given by

w-region:

8(co)}” o 0
eat+ 0 LD oo fup ey -

accumulation and adsorption large-scale convection

= V- {D:)}w- q)wV{(cw)“’}w + %J‘nmnc})dA + {6;'Vfw} -

Aon

large-scale diffusion

_ V-(pr{;’ﬁwéw}‘”) _ u7%J‘nmn((vﬁ)m‘}m _ D*w.vctw _ 6:)'V{<Cm)w}w)dA

large-scale dispersion Auy

inter-region flux (23b)
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In order to evaluate the terms in egns (23a) and (23b) Directing our attention to the convective transport term
that contain the spatial deviation concentrations, we needin egn (25), we make use of the velocity decomposition

to develop the closure problem foy andc,,. The govern-
ing differential equation fot, can be obtained by subtract-
ing the intrinsic form of eqn (23a) from the Darcy-scale
equation forc,)" that is given by eqn (3). We develop the
intrinsic form of eqn (23a) by dividing that result ky,,

and this leads to a rather complicated result. However, prior

studie$”?8clearly indicate that it is an acceptable approx-

imation to ignore variations of the volume fractiop,, in
the development of the closure probleand this means that
the intrinsic form of eqn (23a) can be expressed as

e (15 9w [y V)]
(@) (V1)1 5 [, nec,en)

=V-

+{B,V¢,}" | = V-({T3,8,}")

-1
(4 *
- 'TZOC J’Amnnw'(<vﬂ>ncn —Dn-VC,,

~B5,v{(c,)"}") ¢A
Subtraction of this result from eqgn (3) leads to
ac, 7 m 7\ 7
6 (1+%,) S+ V- (Ve (e = { Vo), } {()")")
=V:(D;¥(c,)" = {P}}"-V{(c,)"}")

—V-[WJ n,.C dA+{I5:-V“n}n]

(24)

{Vw A nw=n

-1
~ (4 ~
+V'{V5ncn}n+ r;w J'Amnnw'(<vﬁ>ncn

- D; Ve, - B,V{(c,)"}") dA (25)

~

a‘
eq(l + @9{;)—5‘} + T (hnln) + Tan Ve = V- {Fpia} +

given by
(Wa)y ={ (v8), | +Ts, (26)

to obtain
(Vo) (€)= {(Vs), } {(e0) "} = (Vs ), &+ T {(c)"}"
(27)

Within the framework of the closure problem, we can use
egns (10) and (18) to obtain

v-{(vs), } =0

and since we are ignoring variations @f, the continuity
equation for the intrinsic regional average velocity takes
the form

v{(vs),}'=0

This result, along with the continuity equation given by
egn (7a) and the decomposition given by eqn (26), can be
used to express the convective transport terms in egn (25)
as

n ~
Ve((a)(en)" = {(a)y b {(e)"}") = V- (Vo))
+\76n'v{<cn>n}n (30)
Use of the decomposition for the dispersion tensor given
by egn (13) leads to the following representation for the
two dispersive fluxes:
D, v(c,)"~{D;}"V{{c,)"}"=D; Ve, +B, V{(c,)"}"
(31)
When egns (30) and (31) are used in eqn (25), our transport

equation for the spatial deviation concentration takes the
form

(28)

(29)

n

V"

convective source

= v(D}-v&,) + v-(b’;-v{@n)”}”) -

diffusive source

A

Nw

o @ on}

-fnnwéndA + (D7 -ve, )
A

nw

oo

jnnw.(wﬁ)qén - D;-vé, - 6;-V{<cn)”}”)d,4

(32)
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As a final simplification of this closure problem, we make This type of constrainthas already been imposed at both

use of the averaging theorem to write the small scale and the Darcy scale, and it is not unreason-
1 able to impose it at the large scale, sirmf; will increase
{ve,}=V{e,} + 7 J'Awnnwcn dA (33) with increasing values oft,. The convective transport

term and the large-scale dispersive transport term in
and setting the average of the deviation equal to zero allowsegn (36) can be estimated according to
us to express this result as

. V:({(vg),&, | =0|(vg) ¢/t (40)
“o ] e, A= (e, ) ((v3)&1) =0 (va),ott,]
Multiplication by {D; }" provides V-{¥s,C, } =O[<vﬁ>ﬂc,,/Lc} (41)
—1 Y
w ' JAW”ann dA={{D;}"-v¢,}" (35) and this allows us to neglect the large-scale dispersive

transport whenever the length scales of the heterogeneities
and this allows us to express eqn (32) in the slightly more are constrained by
compact form given by

a
En(”é(n)'%L + V'(<Vﬁ>n5n) + cﬁn-v{@n)“}“ - V'{Vﬁngn}n

convective source

= v-(D}-v¢,) + v-(ﬁ’,‘]-v{@q)"}”) - V-{D:]-Vén}n

-

diffusive source

-1
(P ~ * ~ ~ ¥
+ -07: J"nw'(<vﬁ>ncn - Dn-Vcn - Dn~V{<cn)”}n)dA
Av]w (36)

If we estimate the accumulation and diffusive terms
according to €,y < L (42)

€ (1+7(n) aa—?: (0] [M} (37) Moving on to the diffusive terms, we keep eqn (38) in mind

and estimate the non-local term as

* _ D:C,, . D¢
7(0;7e) =0 % (38)  v.{pive,)}=0 L:/] (43)
n
the closure equation fat, will be quasi-steady when the  ang we see that this term can also be neglected whenever
following constraint is satisfied: the constraint given by eqn (42) is satisfied.
D t* On the basis of egns (39) and (42) we shall simplify
n . .
65% (1_”(") >1 (39) the transport equation fdr, to the following form:

V'(<vf3>n5n) + ;'Bn'v{«'n)n}n = V'<D;'V5n) + V'(ﬁz'v{@n)n}n) -

convective source

diffusive source

P ~ * ~ ~ *
+ uyz jnnw-((vﬁ)ncn - D,-ve, - Dq-V{(an}n)dA
A

nw

(44)
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Here we note that our closure equation will be homogeneous2.2 Closure problem
in ¢, if the gradient of the regional average concentration
is zero. For this reason we have identified the two terms

involving this gradient as theourcesof the ¢, -field. An Co N N
analogous form can be derived for theregion transport Periodicity : €,(r +€)=¢,(r), Cu(r +6)=C,(r),
equation, and the two will be connected by the interfacial i=1,23 (47¢

boundary conditions.
On the basis of egns (4), (5) and (8), we see that the

boundary conditions take the form Average : {¢,}"=0, {¢,}*=0 (47f)
B.C1 (c,)"=(c,)”, atA, (45) Here it should be clear that all th&urces or the non-
B.C2 n,,D;V(c,)" =n,,D;V(c,) atA, (46) homogeneous terms in this boundary value problem, can

be expressed in terms of the two concentration gradients
and when we use the decompositions given by eqn (11), weand the concentration difference, i.e.
shall obtain the boundary conditions in terms of the desired
spatial deviation concentrations, and¢,. This leads us Sources : V{(c,)"}", V{{c,)“}",
to the closure problem as follows. Wl
P ({{e)*}" = {(e)"}")

V-((vgnén) + \Gﬁfv{(cn)”}"l = v-(D}-v,) + V-(ﬁ;-v{(cn)”}n) -

convective source

diffusivz source

P -~ * o~ ~ n
+ -0)72: J"nw'(<vﬁ>ncn - D,-ve, - D;-V{(cn)”} )dA
Ao (47a)
. . 0@ "
B.C.1 &y = Go + ({€)) = et ), @ Ang
) exchange source (47b)
* ~ * T]
Mo "D Ve, + [‘nw'Dn'V{<cn>n}
diffusive source
B.C.2
— * ~ * w®
= np, Dy Ve, + ny, Dy -V{(c,)*} . at A,
diffusive source (47¢)

V{((pdato) + Vao V{€)?]" = V(D5 VE,) + V'(ﬁl-v{@w)“’}“’)

“

convective source diffusive source

7

Ao (47d)

-1
+ &Jnmn-(<vﬁ>m5w - D-vE, - D:,~V{(cu,)“’}w)dA
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At this point we have replaced the original problem by a set Problem Il
of large-scale averaged equations and a local-scale closure
problem involving the large-scale variables and the spatial

deviations. Our objective now is to obtain an approximate V'(<Vﬁ>nbnw) =V:(D;Vb,,) — ¢, "¢, (51a)
solution of this problem. Following ideas developed in the
treatment of heat transfer in porous mé&di® 32 or in B.C1 b,,=b,, atA, (51b)

dealing with the flow of a slightly compressible fluid in a B.C2 n,,D:!Vb,, =n,,D;Vb,, +n,D,atA,
heterogeneous porous medi®tin® this suggests 1T e e TRl T e e 5‘”1
representations for the spatial deviation concentrations of (51c)

the form V.(<Vﬁ>wbww> +\76w = V(DZwaw> + Vﬁ:) - §0‘; 1wa
¢, =by, V{(e,)" " + by V{(cu)“ }* (51d)
+1,({(e)}" = {{)"}") (483 Periodicity : by, (r +€) =b,u(r), buo(r + €)= bu(r),
=y V(6" b () ) =123 Gle
+1o({(e)} = {{c)"}") (48D Average : {b,,}"=0, {by,}"=0 (51f)
in which we refer tob,,, b,,, r., etc., as theclosure In this case the two constant vectors are defined by
variables In terms of these closure variables, there are 1

three closure problems that result from eqns (47), and the = Cpo= — -5~ JAW nnw'<<vﬂ>ﬂbnw -D, 'Vbnw) dA (52a)
first of these is given by o

1 i <
Problem | Cow = — (V_ '[Aw nwn'(<vﬁ>wbww - Dw'waw - Dw) dA
‘ L, (52b)
V'(<V6>nbnn) + Vg, =V+(D;:Vb,,) + VB, — ¢, 'c,, and they are related by
(49a) Cro = — Cuo (52¢)
B.C1 b, =b, atA, (49b) The third closure problem originates with the exchange

. source {(c,)“}* - {{c,)"}", and it takes the form
B.C2 n,-D,Vb, +n,, D =n,D,Vb, atA,

(49c)
Problem I

V-((Va)ubun) = V+(D5Vbyy) = 5 'C (49d)
Periodicity : b,,(r +¢)=Db,,(r), V-(<V5>nrn) =V-(D;-Vr,) — o, o (53a)
bwn(r + €|) = bwn(r)n | = 1, 2, 3 (499 B.C.1 rn =r, + 1, at Aqu) (53b)

. n__ ©

Average : - {by,}" =0, {b,}"=0 (490) B.C2 n,,D:Vr,=n,D,Vr, atA, (53c)
Here we have used the vectarg andc,, to represent the V-((vg),re) = V(D591 + 0 1" (53d)

inter-region flux terms according to
Periodicity : r,(r +€;)=r,(r), r (r +€)=r,(r),

1 . <

Cpm=— v, JAW (<V6>nbrm —D,Vb,, - Dn) dA i=1,23 (53¢

(502) Average : {r,}"=0, {r,}*=0 (53f)

1 . Here the mass transfer coefficient;, is defined by

Coy= — v ann-(<vﬂ>wbwﬂ —-D;-Vb,,) dA  (50b)

and these are related by @ == q/_xJAmn" My — D:'Vr") dA
Cpy = — Cuy (50¢)
The second closure problem is related to the source, =+ ij nwn'(<vﬁ>wrw_Dj)'er) dA (54)
Auy

V{{c,)“}", and it is given by Ve
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Rather than work directly with the closure variablesand obtain

r, it is convenient to define new variables according to a{(c >n
%(H%MT V-lea{ (Vo) } ()"}
Sq:r,Serw—i‘l (55) ®
' V-[d, ({(e))"}" = {{eo) "} )] =ty ¥ (e))"}
in order to represent the closure problem for the exchange — U, V{(c,)"}*=V-(D,,-V{{(c,)"}")
coefficient in terms of a continuous closure variable. Under o 3 @ w
these circumstances we express the third closure problem +V: (D V{< > } ) o ({<C"> } {< > } )
as follows. (58)
Here the various coefficients are defined by
Problem IIl'/ d, =¢,{V,s, —D;,-Vs,}" (59a)
V-((Vs),8 ) =V:(D;Vs)) — ¢, o’ (562) 1 . <
< ) Upy = — v, JAwnnw'(<Vﬂ>nbnn -D,'Vb,, - Dn) dA
B.C1 s,=s,, atA, (56b) (59b)
1 «
B.C2 n,,D,Vs=n,D,Vs, atA, (56¢) Upo = = 77~ JAW nnw'(<vﬁ>nbnw - D,,-Vb,,w) dA  (59c)
V-((V5)uSs) = V(D Vs,) + o, e (56d) D;; =¢,{D}-(1+Vb,,) —Us,b,, }" (59d)
Periodicity 1 s,(r +¢) =s,(r), s,(r +¢€;)=s,(r), D, =¢,{D;Vb,, —Vs,b,,}" (59¢)
i=1,23 (56
= - — n,.- (v —D, Vs, ) dA 59f
Average : {s,}"=0, {s,}*=1 (56f) * Vo JALT << shn% D, 37) (591)

In order to obtain the closed form of theregion transport
In this case the mass transfer coefficient takes the form  equation, we follow the above development from eqn (23b)

to arrive at

a C(JJ “1e w wyw

= (s mims) e 6) e N v ) )

= V-[da ({(c;)"}* = {{c)"}")] = Uy V{{c;)"}"

These closure problems are similar to those that have —U,, V{(c,)*}*=V-(D;,V{{c,)"}")

been solved previously by Quintard and WhitaKer ¢ o o nn
Fabrieet al®” and Quintardet al.*2, and they can be used +V-(Bou{(0)"}") —e ({(e) "} = {{e)"}")
to determine the coefficients that appear in both the two- (60)

equation model and the one-equation model that was
developed in Part IV. The major difference between this
development and previously studied two-equation models
is associated with the spatial variations of the dispersion
tensors due to their dependence on velocity fluctuations.
As a consequence, new diffusive source terms appear in
the closure problem in the form of the divergence of the By -
deviation of the dispersion tensors. The derivation of  Yee = 7~ J&W”wn'(<vﬂ>wbww_Dw'waw_Dw) dA
the closure problem for the one-equation, equilibrium (61b)
model is presented in Appendix A.

In order to develop the closed forms of eqgn (23a), we
substitute the representation ftyy given by eqn (48a) and Upy= — — J Nuy*((Vg) Dy — Dy Vb, ) dA  (B1cC)
make use of the change of variable indicated by eqn (55) to Voo J Aoy

The coefficients in this case are analogous to those given
by eqns (59), and for completeness we list them as

dw = ﬁpw{vﬁwsw - DZ sz }w (Gla)
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D = 0o { D (14 Vb,,) — ¥s,bu, }¢ (61d)

D::l =Py {DZ) 'wan - vﬁwbwn }w (616)
. 1 .

=g JAQ Moy ((Vg),S, —DLVs,) dA - (61f)

In the next section we shall present results for the coeffi-
cients given by egns (59) and (61).

The large-scale equations, eqns (58) and (60), represent a

generalized version of two-equation models for describing
dispersion and adsorption in such systems, and it is interest-
ing to discuss the theoretical status of the linear mass
exchange term in these equations. On the basis of the
assumptions we have made, the concentration deviations
given by eqns (48), coupled with the Darcy-scale problem
given by eqns (47), represent a simplified closure scheme
for the large-scale averaged equations associated witf the
and w-regions. A general solution would involve a more
complicated expression for the exchange between the two
effective media, and the retention of the transient form of
the closure probleff. In the next section we test the present
theory versus numerical experiments obtained for the case
of stratified systems.

3 NUMERICAL EXPERIMENTS FOR STRATIFIED
SYSTEMS

In this section, we present a complete analysis of the strati-
fied system illustrated in Fig. 3 in the absence of adsorption
effects. This system has a behaviour typical of the two-
region models that have been studied previctfsty
while being simple enough to allow for precise analysis.
We first obtain Darcy-scale solutions that will serve as
numerical experiments for a comparison with theoretical
predictions.

3.1 Local problem

The local boundary value problem under investigation is
defined below.

9(c,)"
ot

€

(62a)

+V-((Vs)y(e)") = V(D ¥(c,)")

y
H .
@D Ln
0 L: X

Fig. 3. Stratified model of a heterogeneous porous medium.
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V-{vg), =0 (62b)
= Ko (g p,0 - 62
<v6>n— g ( <pﬁ>n Qﬁg) (62¢)
B.C1 nyu«(Vg), =Npur(Vg), atA, (62d)
B.C2 (ps)o=(ps)o, atA,, (62e)
B.C3 (c,)"=(c,)”, atA,, (62f)
BC4 —n,.((ve),(c,)" = D;¥(c,)")
= _nﬂwl(<vﬁ>w<cw>w_DZ'V<Cw>w)’ atAﬂu
(629
& Mol (e = VDV (e o2
V-(vg), =0 (62i)
_ K B _ -
(Ve )o= p (V<pﬁ>w Qﬁg) (62))
B.C5 y=0H:n:(v)’=0; n:(D.V(c,)*) =0;
a=1n,w (62K

B.C6 x=0: <p3>§=95g5h; (Ce)*=1, a=nw

(621)

B.C7 x=Lo: (ps)?=0; n-(D}V(c,)*)=0;
a=nw (62m)
I.C. t=0: <Ca>a=O, o=1w (62[‘1)

Here we note that all the concentrations are now dimen-
sionless, so{c,)* represents a concentration made
dimensionless by some reference concentratizin, The
solution of this boundary value problem is trivial in terms
of the velocity field, i.e. the velocities are constant in
each region. Consequently, the dispersion tensors are
constant in each region, and the closure problem can be
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simplified in the obvious manner. The two-dimensional con- It is important to note at this point that the periodic system
centration field was obtained by using the numerical model representative of the problem expressed by eqgns (62) is

MT3D*. constituted of layerdwice as largeas those represented
in Fig. 3, and we have used the appropriate unit cell asso-
3.2 Closure problems and the large-scale problem ciated with this periodic system in deriving egn (65).

Analytical solutions of the equations of closure problems | 3.3 Numerical methods
and Il above are readily obtained, and the associated large-
scale problem is one-dimensional. The equations are givenNumerical solutions of the large-scale, one-dimensional
by problem are found by using the following procedure. First,
. . the operator in the transport equation is split into three
{<v6>n} =i-{<vﬁ>n} = constant (63a)  equations as shown here for theegion equation:

€ {< >}n+¢n{<vﬁ>n}naix{<cn>n}n=0 (66a)
6n¢n%+¢"{< > }ni{<cn>ﬂ}n a{<c >n}n p
Z(D:j;)xxaa_:z{< >}n (D )XX6X2{< >}w €78y at 2= (D )XX8X2{< >}
—a’ ({{c,)"}" = {(c.)"}") (63b) + (DZZ)XX&{@)“’}“’ (66b)

wwW+%{<vﬁ>w}“3{<cw>“’}‘° e D (e h - () ) (660

ot
- 9 " © Equations like eqgn (66a) are solved by using an explicit
= )XXEK )"+ (DG )anx2{< w)"} second-order scherfie** while diffusion equations like
s wye egn (66b) are solved by using a second-order implicit
“ ({<C‘°> } {<C"> } ) (630 scheme. Finally, eqn (66¢) and the similar equation for
{<VB> }“:i-{<v5> }w:constant (63d) the w-region are solved analytically for one time-step.

The resulting scheme is second-order with negligible

A complete discussion of associated large-scale boundarynumerical dispersion. Several cases were investigated ran-
conditions is beyond the scope of this study, and we chooseging from negligible dispersion effects to important disper-

the following initial and boundary conditions: sion effects.
n w

B.C1 x=0, {{(c,)"}"={(c,)"}"=1 (64a) 331 Case L

The system properties for this case are summarized in
9 9 ore Table 1, and the concentrations fields obtainedtfer 8

B.C2 x=L,, 5({<Cn>"}n = 5({<Cw> }¥=0 (64b) X 10*% s are plotted in Fig. 4. This figure shows that advec-
tion in each stratum is the unique mechanism and that

there is no mass exchange between the strata. This type of
I.C. t=0, {{(c,)"}"={(c,)"}*=0 (64c) behaviour clearly calls for a large-scale, non-equilibrium
description. From this computed field we obtain ‘experi-

mental’ values for the large-scale averaged concentrations
by averaging over cross-sections of the stratified medium.
Y * To obtain the theoretical results for this case, we first deter-
(D)= 4(D) (65a) mine the effective properties for the two-equation model
by solving the three closure problems, and these values

Y () — are reported in Table 1. The one-dimensional, large-scale
(D)= (D) =0 (63) equations are then solved numerically to provide the
theoretical concentrations that are plotted in Fig. 5. The

(DZ‘;,) —%(D*) ) (65c) results show very good agreement between theory and
experiment, except for some limited numerical dispersion

near the fronts. To illustrate the need for a large-scale, non-

. 12 (D:)W(D*)W equilibrium approach, the average concentration corres-
= > - (65d) ponding to the one-equation model is plotted in Fig. 5.
<€n +€w) ‘pw(D">YY+‘p” (D°’>W This curve obviously cannot be the solution of a classical

In egns (63), effective properties for the one-dimensional
unit cell are given by




Heterogeneous porous media V 73

Table 1. Properties of the stratified system (case 1)

Unit Cell ¢,=¢, (m) Pq L/t
1 0.5 10
Physical Properties Kan Kaw &, €,
(10~12 mZ) (10-12 m2)
1 0.1 0.38 0.30
e, | ). [e) /)€, /6,

(10-9 n12 s-l) (10-9 mZ S-l)

0 0. 1 1

Flow Properties dh (Vedu (Velo

(m)

0.4 3107 0.3107
Ejj’ecti\.ie Pro.perties (D;:] )n (D:u )n (Dn“w )xx = (D:;| )n

(Dispersion) 10°m?sY) | (10° m?s™) (10° m®s™)
0. 0. 0.
o*
(10°s™)
0.

Note: All properties are taken equal to zero unless they are cited in the Table.
0p &/ ug="7.7 10+ (m 5)*

advection, dispersion equation. While these results may calls for a large-scale, non-equilibrium model. The fields
seem trivial, they emphasize that with a little additional from the numerical experiments, the two-equation model
complexity, i.e. the introduction of a two-equation model, and the one-equation model are plotted in Fig. 7, and
it is possible to take into account mechanisms that would there it is seen that the propagation of the front is consider-

require an extremely complicated one-equation model. ably faster in they-region. Dispersion is negligible; how-
ever, mass transfer between the strata is not zero and has a
3.3.2 Case 2 small influence on the concentration field in the region
The system properties for this case are summarized inbetween the fronts. The results indicate relatively good
Table 2, and the concentration fields obtainedtfer 8 X agreement between the numerical experiments and theo-

10*® s are plotted in Fig. 6. This figure shows that advection retical calculations, especially for a case that has the reputa-
in each strata is the most important mechanism, while sometion for not being ‘Fickian’ in terms of a one-equation
cross-section diffusion is present, and this behaviour clearly model. Mass exchange between the stratmderestimated

by the theoretical model, and several explanations can be
proposed to explain this phenomenon. We list these as
follows:

1. Possible numerical inaccuracies must not be forgot-
Fig. 4. Concentration at = 8 X 10™s, case 1. ten; however, we think that numerical dispersion and
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{or S {or.}
1 — 3 1 -
1
08+t . ‘ =—s= n-region (exp.) 0.8 — = nregion (&.)
8 == o-fegion (exp.) " i

A L} ! === o-region (exp.)

08 i — — n-region ((t:‘eoz 0.8 — = n-region (theo.)
k| o-region(theo) | |t H ] . region (theo.)
0.7r I —— 1-eq behavior 0.7 __::q behavior
|
0.6 06
0.5 0.5
04} 04
0.3} 03
0.2 ‘ 0.2
0.1 \ 0.1
[ R A S e
0 N N " A 0 T 1 L N
o o1 02 03 04 05 06 07 08 08 1 0 01 02 03 04 05 06 07 08 08 1
X/ L(; X/LO

Fig. 5. Comparison between numerical experiments and 1D Fig. 7. Comparison between numerical experiments and 1D
large-scale predictions & 8 X 10™ s, case 1). large-scale predictions & 8 X 10*%s, case 2).

accuracy cannot explain all the observed differences. heterogeneous porous media and the demands on the closure
This remark is valid for all cases investigated in this problem are much greater.

paper, and we shall not repeat this argument in the

next set of comments. 3.3.4 Case 4

2. It has already been obserV@dhat the theory under-  The concentration fields at the Darcy scale are shown in Fig.
estimates the exchanged flux at early times, while it 10 and all large-scale fields in Fig. 11. This case corresponds
naturally provides better estimates as time increases.to much higher dispersion effects. As a result, mass
This occurs because estimates of the concentrationexchange between the strata is increased, and the entire
fields provided by the closure problems correspond process is closer to large-scale equilibrium. As expected,
to a fully establishedconcentration wave in the the difference between numerical experiments and theoretical
medium. This is not the case in this particular simula- predictions is small.
tion, since there is only a fringe of the strata that is
affected by diffusion near the interface. Finally, we have performed many numerical experiments

under conditions leading to a large-scale equilibrium

behaviour by increasing lateral dispersion. Under these

3.3.3 Case 3 o _ _ circumstances both the two-equation model and the one-
This case corresponds to a system with higher d'SperS'O”equation equilibrium model agree very well with the

effects, and the flow properties are given in Table 3. The n,merical experiments. This behaviour was of course
concentration fields determined at the Darcy scale are expected.

plotted in Fig. 8, and all large-scale fields are shown in

Fig. 9. The large-scale, one-equation behaviour is still

characteristic of non-Fickian behaviour, while the two- 4 ASYMPTOTIC BEHAVIOUR

equation model provides a first-order accurate description

of the system behaviour with a limited error. Here we should |, this section we are interested in the asymptotic behaviour
reiterate that the closure problem given by eqns (51) through ot the sratified system under consideration. In the absence
(53) i_s not_exacI and this is generally the case. For of any adsorption, it has been demonstrated by Mestrig 24
especially simple systems, such as Stokes flow in @ homo-ya¢ for sufficiently large times the average concentration

geneous, rigid porous _ngium, one can indeed develop,peys rather closely a dispersion equation given by
exact closure problerfi$™? however, the problem under () 210 210)
consideration involves transient, convective transport in (¢} 2 [(vp)) o _ ( f)xx? 67)

Fig. 6. Concentration at = 8 X 10™ s (case 2). Fig. 8. Concentration at = 8 X 10™ s (case 3).
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Table 2. Properties of the stratified system (case 2)

Unit Cell ¢, =1¢, (m P Ly/ty
1 0.5 10
Physical Properties Kan Koo g, g,
10%m?) | 107 md)
1 0.1 0.38 0.30
;). 6. | /0;),| 6,00,
10°m?s™) | (10° m®s™)
0.38 0.27 1. 1.
Flow Properties Sh Ve, (Vgla
(m)
0.4 3107 0.3107
Effective Properties (D;] )n (D:;, )u (D:., )n _ (D::n )xx
Dispersion) | 109 w2 ) | (10° m* s (10° m* ™)
0.19 0.135 0.0
o*
(10° s
0.947

Note: All properties are taken equal to zero unless they are cited in the Table.
0p g/ ug="7.710* (ms)"

The dispersion coefficient in this equation is given by this is given by
D)= ¢, (D; o (c o (c ey 9{(C
(B2) = 20 (D} o (9 8Oy () 2O (o) D g

(€77 + €w)2 (en‘anew‘%)z

+¢,(D5) i+ 12 (eypp + cop) This equation is restricted by the approximation
{{e))"}" ={{c.)"}"={{e)},
X $+ # (<v3>f - <VB>§)2 (69) large— scale mass equilibrium (70)
(D"I)XX (Dw)xx

The derivation of this result makes use of the method of and the predicted dispersion coefficient takes the form

moments in a manner similar to the work of Aflsand (D**)xx=‘Pn(D:)xx‘f‘%(DZ)xx (71)
these results have been extended to more general, random

stratified system’s°>. The estimate of the large-scale This relation issignificantly differentfrom the dispersion
asymptotic dispersion coefficient given by egn (68) was coefficient represented by eqn (68), which is determined by
found to agree very well with experimental d&taThe requiring that the moments of egn (67) match the moments
one-equation model that was derived in Part IV has exactly of the particular process under consideration. While Marle
the same form as eqn (67), when there is no adsorption, ancet al.** obtained rather good agreement between theory and
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Table 3. Properties of the stratified system (case 3)

Unit Cell L’,I =¢, (m) Pn Lo/fn
1 0.5 10
Physical Properties Kan Kpaw g, €,
(10™% m?) 10" m’)
1 0.1 0.38 0.30
SRR R IR AR
10° m?s™) | (10°m’s™)
30 3 0.1 0.1
Flow Properties Sh (Vg (Vgdo
(m)
0.4 3107 0.3107
Effective Properties (D:\’n )u (D:., )n (D::, )n _ (D:):| )xx
(Dispersion) | 109 m2 sy | (107 m? s (10° m’s™)
15. 1.5 0.0
o*
10°s™")
1.64

Note: All properties are taken equal to zero unless they are cited in the Table.
0p g/ ug="7.710% (ms)"

experiment for the case ghssive dispersiom a stratified exhibits a lack of dispersion compared with the one-
system, it would be a mistake to modify eqn (67) with a equation non-equilibrium model of Marlet al?*. The
retardation factor such a¢ H{%x}) and expect it to results from the two-equation model indicate that the
represent accurately an adsorption process. concentration profile for thew-region lies below that

In order to compare our work with egns (67) and (68), we for the y-region, and this is required since the velocity
studied a stratified system, having essentially an infinite in the w-region is a factor of tetess thanthe velocity in
length, that was subjected to a step change in the inputthe »-region. At the leading edge of the front, the results
concentration. Thus we again used eqgns (63) through (65)from the two-equation model bracket the value predicted
with the lengthL , great enough for the downstream bound- by eqns (67) and (68), while at the trailing edge of the
ary condition to have no effect on the concentration profiles. front, the non-equilibrium one-equation model of Marle
The physical parameters were taken to be the same ast al®*clearly over-predicts the concentration. The average
those used in Case 4, so they are given in Table 4 with concentration predicted by the two-equation model is given
the exception ofL/¢,, which was of the order of 100. by
The concentration profiles at a distance of 20 m from the . 2 @
entrance are shown in Fig. 12, from which are seen a e =e,{(e,)"}" +eaflen)’} (72)
variety of different results. The one-equation equilibrium in which {{c,)"}" and {(c,)“}“ are not constrainecby
model that is characterized by eqns (69)—(71) clearly egn (70). We consider this average concentration to be the
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Fig. 9. Comparison between numerical experiments and 1D Fig 11, Comparison between numerical experiments and 1D
large-scale predictiong & 8 X 10™ s, case 3). large-scale predictiong & 8 x 10*®s, case 4).

best predictor of the large-scale average concentration, andcoefﬂment Is given by

this generally lies below the values predicted by eqns (67)  (D%') = (Dim)xx+ (D) xx + (Dian)sx + (Do)
and (68). This means that the time and length-scale con- 2

straints that are imposed on eqns (67) and (68) are not (ew¢w{<vg>n} —€n<Pn{<V6>w}>

satisfied at a distance of 20 m for the conditions listed in +
Table 4. The comparison is seen more clearly in Fig. 13,

where we present the time derivative of the concentration Introducing the expression far* given by eqgn (73), we
profiles. These represent valuesipfc)l/ ot, determined ata  obtain an expression for the asymptotic longitudinal disper-
distance of 20 m, as a function of time. These curves can sion coefficient equal to the one proposed by Matlel**.
also be thought of as concentration profiles for a pulse input This result suggests the following comments:

condition, and they clearly indicate that eqns (67) and (68)
do not predict a symmetric pulse at a distance of 20 m.
When the distance is increased to 66.5 m, the agreement
between all the models improves significantly, and the
results for the concentration profiles are shown in Fig. 14.
The one-equation equilibrium model provides thverst
representation while the two-equation model is in good
agreement with the work of Marlet al?*, The time deri-
vatives of the concentration profiles are shown in Fig. 15,
and there we see rather good agreement between the
average concentration determined on the basis of the two-
equation model and eqgn (72) and the one-equation non-
equilibrium model given by egns (67) and (68). On the
other hand, the one-equation equilibrium model developed
in Part IV illustrates rather poor agreement with the other
two results.

The direct study of the asymptotic behaviour of the two-
equation model is presented in Appendix B, where we show
analytically that the asymptotic longitudinal dispersion

5 CONCLUSIONS

(73

o (En“’n + ew‘/’w)

1. The two-equation model has an asymptotic behaviour
that reflects exactly the behaviour deduced from a
direct analysis of the Darcy-scale problem. Since
the two-equation model can be applied to more
general systems than stratified media, our result
represents an important extension of the theory.

2. The value of the asymptotic longitudinal dispersion
coefficient depends on*. Therefore, the comparison
is a test of the validity of the large-scale closure
problem. We have presented in Parts | and Il a
comparison with several estimates of the exchange
coefficient published in the literature for purely
diffusive problems. They may differ by as much as
a factor of 3. The comparison with the result by Marle
et al** shows that the proposed theory gives an exact
result.

In this paper we have introduced a first-order version of a
two-equation model describing a class of local non-
equilibrium dispersion problems in heterogeneous porous
Fig. 10. Concentration at = 8 X 10%®s (case 4). media. A comparison with numerical experiments for
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Table 4. Properties of the stratified system (case 4)

Unit Cell ¢, =¢, (m o Lo/
1 0.5 10
Physical Properties Ksn Kpw g, €,
10 m?) 10" md)
1 0.1 0.38 0.30
;). e, |E;) /) |6),/0.),
(10-9 m2 S-l) (10-9 m2 S-l)
300 30 0.1 0.1
Flow Properties h (Ve (Vg)o
(m)
0.4 3107 0.3 107
Effective Pro.pertles (Dn”n )n 0 )n (D:m )n _ (D:,',] )u
(Dzsperswﬂ) (10-9 m2 S-l) (10-9 m2 S-l) (10_9 m2 S-l)
150. 15 0.0
o*
10° s
16.4

Note: All properties are taken equal to zero unless they are cited in the Table.
opg/ ug="7.710* (ms)"

stratified systems has demonstrated the ability of the numerical experiments can be considered as a reliable veri-
two-equation model to describe most of the large-scale fication of the essential features of the two-equation model.
non-equilibrium behaviour of such bimodal heterogeneous An improved model could be achieved with the use of
systems. The agreement was found to be reasonable for &igher-order, transient closure problems. On the other hand,
wide range of large-scale Peclet numbers from negligible the improvement of the predictions of the two-equation
diffusion/dispersion effects to dominant diffusion/ model over those available from the one-equation model
dispersion effects. In addition to the comparison with is significant, and may be sufficient for many practical
numerical experiments, we have also compared our two- purposes. This is a matter of choice for a particular
equation model with the one-equation non-equilibrium application.

model developed by Marlet al?* for the special case of Although interest in two-equation models has long been
passive dispersioiin a stratified system. The asymptotic recognized in the literature, our contribution lies in the
results are identical, and this represents a successful comintroduction of the closure problems that give some reliable
parison with the laboratory experiments that were used by link between the lower-scale and the upper-scale structures.
Marleet al.?* as a test of their theory. At present there would The development of numerical methods to solve the closure
appear to be no laboratory experiments for the case of dis-problems in more general cases could be used in connection
persion and adsorption in stratified systems; however, thewith any deterministic or statistical representation of the
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Fig. 12. Asymptotic behaviour of the different large-scale models: concentration fields (case 20 m).

heterogeneities, thus providing valuable tools for engineer- influence on the flow pattefh and it is well known
ing purposes. that viscous fingering may develop when viscosity gra-

Finally, it must be pointed out that the development dients are important, thus affecting dramatically the con-
presented in this paper is limited to solute transport centration field. It is not clear at this point whether
with negligible density variations and viscosity variations. these effects can be introduced into the analysis in a
Gravity-induced gradients may have a significant simple manner.
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I L 1
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Fig. 13. Asymptotic behaviour of the different large-scale models: time derivative of the concentration fields (gase28;m).
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Fig. 14. Asymptotic behaviour of the different large-scale models: concentration fields (case 86.5 m).
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in which the large-scale dispersion tensor is defined by
D" =¢,{D;}" +0.{D}*

D;}" - {D}} -
+ % JAWnan da+{B, Vb, |

F{BLVD) (0, (T} e T, ) (A2)

In order to derive these two results from the two-equation

81

process to obtain
{{D:}W'bem}n = {D:}n_{wa}n (A10)

and then use the averaging theorem in order to express this
term as

1
{me’}" :V{bfm}ﬂ + \717 JAnwnﬂwbnn dA

Here we have ignored variations @f, since we are work-

(A11)

model presented in this paper, we first add eqns (58) anding with the equations of closure problems | and Il above.

(60) and impose the approximations

{(©,}"={©.}*={(©} (A3)
to obtain
(15 + (14 5o L
+V {(%{Wﬂ%}n + ‘Pw{<V6>w}w){ <C>}}
- (unn + Uy + Uy + wa) V{(c)}
=V:[(D}; + Dy +Dg; + Dy, ) V{(o} ] (Ad)
Use of the definitions
{0 +{TH=6,1+%,) e, +eu(1+%X0)eu (A5)
{<V6>}=¢’n{<VB>n}"+¢w{<Vﬁ>w}w (A6)

allows us to simplify this result to obtain the traditional
accumulation and convective transport term according to

tda+ih A v () on)

- (um] + unw + uwn + uww) V{ <C>}
=V:[(D}; + Dy + D + D) V{{c}}] (A7)
In order to determine the form of the overall dispersion

tensor, we recall the definitions of the four dispersion
tensors in the above equation, given by

D, =¢,{D;-(1+Vb,,) —¥s,b,, }" (A8a)
D;; = ¢,{D;Vb,, —¥s,b,, }" (A8b)
Dy = ?u{ Dl Vb, — Vb (A8c)
Do = 001Dy (14 Vby) — Tgubug | (A8d)

These representations need to be arranged in a form that

will allow us to extract the relation given by egn (A2), and
we begin this rearrangement with eqn (A8a) to obtain

D,,=¢,{D,-(1+Vb,,) —g,b,,}"

=¢,[{D;}" +{D;-Vb,, }" — {Ts,0,, }"]

=¢,[{D;}"+{{D;}" Vb, + B, Vb, }"
- {vﬁnbvm}n}

We can remove the regional average from the averaging

(A9)

From egn (49) we have

{by,}"=0 (A12)
and so eqgn (A10) takes the form
({01770, ) =0} [ mnbyda (23

Use of this result in eqn (A9) allows us to exprddy in
the form

1
D =, |{D:V" 4 (D’ ”-—J n,.b,, dA
e 0 (031" [ et

+ {6; 'Vbnﬂ}n - {vﬁﬂbnn}n‘| (Al4)
which is more conveniently written as
Dy =¢,{D;}" + { rV‘Zc} : JAwnnwbnn dA
+ %{'5; 'Vbnn}n - ‘pn{vﬁnbnn}n (A153)

If we repeat this procedure with egns (A8b), (A8c) and
(A8d), we obtain

sk D* K o~k n
D! = L - s JAM by, GA+ ¢, {B; Vb, |
— e, {050} (A15b)
ko D: ¢
D, = % JAmnn“’"b‘”’ dA
T %{62 Vb, }w — 0o {Tgabn }* (A150)
TS * )W DZ} ¢
Dl =, {D5}* + {%} .J%annbw dA
+ ‘pw{ﬁzy 'waw}w - ¢w{vﬁwbww}w (A15d)

If we sum these four equations, we begin to obtain some-

thing that resembles the definition given by eqn (A2):

D} + D} + D + Dl = ¢, {D}} + 0, {DL}*
D, "
{Wv;} .JAmnnw(bnfl—bW) dA

{D.}”

Ve
+ ‘pn{ﬁz'v(bnn + bnw) }TI + ‘Pw{ISZ'V(bwn + bww) }
Py {\7671 (bnn + bnw) }n - ‘pw{vﬁw (bwn + bww) }w (A16)

_I_

+

JAM (b + Bis) A
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and the resemblance becomes clearer when we make use of periodicity : b, (r +€)=b,(r), by(r +¢)=b,(r),

the combined closure variables defined by

b, =b,, +b,,, b,=b,, +b,, (A17)
Use of these relations in eqn (A16) leads to
D}, +D;. + D[ + DL =, {D;}" +-0.{D}"

D"
{(V";} . JAW nnwbn dA

O [ o b
+¢n{5:-Vbn}n +gow{l5:-wa}

— ey {Vgb, }" — 00 {Vgub0 }
At this point one need only recognize thaf, = —n,, and

make use of the two boundary conditions given by egns (49)
and (51) to conclude that

+

+

(A18)

D}, +D}.+ DL} + DL =D" =¢,{D}}" +-¢.{D.}"

D} — {D}}* .
+ W JAWnWb,, dA+{B, Vb, |

(B0} = (6, {T,,}" + 0Tk }) (ALY

Use of this result with eqgn (A7) provides the more compact
form of the one-equation model given by

(@ (14 ) D v (v o)
- (uﬂﬂ + unw + uwn + uww) V{ <C>} = V(DM V{ <C>}>

(A20)

In order to calculate values of the dispersion tenfr,

i=1,23 (A22¢)

Average : {b,}"=0, {b,}*=0 (A22f)

At this point we are ready to move on to the non-traditional
convective transport terms in egn (A20), and from eqns (59)
and (61) we have

1 . o
Uy = — {V_w JAWnnw'(<VB>nbnn - Dn'Vbnn - Dn) dA
(A23a)
1 «
U= = 7 JAW Ny ((V3),bye — D} Vb, ) dA
(A23b)
Uy = — .Vi JAm nwn'(<vﬁ>wbwn - Dz'wan) dA
(A23c)
1 . o~
o= = 57 J%ﬂnwn-(<vﬁ>wbww ~D; Vb, - B;) dA

(A23d)

Use of the definitions of the closure variables given by egn
(A17) allows us to add pairs of these equations to obtain

1 . .
JAMnW-(<vﬁ>nb,, ~D;Vb, - B;) dA

Upy tUpe = — (Vim
(A24a)

1 . -
Ugy + Uy = — o JAmnwn-«vg}wbw—Dw -wa—Dw) dA

we need the closure problem that produces the closuregp the basis of the boundary condition given by egn (8):

variablesb, andb,. On the basis of the definitions given
by eqn (A17) and the following definitions for the constants
in the two-equation model closure problems:

C; =Cyy +Cpys Cy =Cyy +Cyy (A21)
we can add eqns (49) and (51) to obtain

V'<<V6>nbn) +\75n = V'(D; 'Vbn) +V'6; — ¢y lcn

(A22a)
B.C1 b,=b, atA, (A22b)
B.C2 n,,D,Vb,=n,, D;Vb,
+n,,-(D;, —D;) atA,, (A220)
V-((vg),by) + Vs, =V:(D;-Vb,) + VDB, — ¢, 'c,
(A22d)

(A24b)
B.C3 n,,(Vg),=Nyu(Vg), atA, (A25)
we can add eqns (A24a) and (A24b) to obtain
unn + uﬂw + uwﬂ + wa
1 . o
=0 JAWnW(Dn-Vb,, +B,) dA
1 . <

o JAM nwn-(Dw Vb, + Dw) dA (A26)

Integrating eqn (A22c) over the ardg,, indicates that the
two integrals in this result sum to zero:

Uyy + Uy F Usy + Uy, =0 (A27)
so eqgn (A20) simplifies to
{} (1H{x1) %w-({(v@}{(c)}) =V-(D™-V{(c)})
(A28)
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We refer to this form as the one-equation equilibrium concentration fields as
model, since it is based on the condition of large-scale

o . +m
equilibrium. Pon= Jixxn{<ca>“}“ dX, a=n,w (B5)

Multiplying egns (B4) byX" and integrating by parts, we
obtain the following set of governing equations for the
moments:

APPENDIX B: MOMENT ANALYSIS OF THE
TWO-EQUATION MODEL

A complete analysis of the three-dimensional moments aﬂn,n=n<{< ) }_ €y S%V) L
associated with the two-equation model can be found in " " ot B/n {g JHon
Zanotti and Carbonéfl. In this Appendix, we present a -

’ n(n—1)(D _
similar analysis with the emphasis on the asymptotic +n( )( nn)xxﬂnn 2

behaviour of the system as a whole, i.e. the average con- +n(n— 1)(an)xx/"’w n—2— *(Mn,n —uw,n)
centration for the two regions, in order to compare our B6
124, (B6a)

work with that of Marleet al.
We consider a one-dimensional, large-scale flow des-
cribed by the two-equation model given by

on sl (o)} + {(v >}§{<cn>”}"

R (COBEE s I

+n(n_1)( ww)xxl”'wn 2

- o
:(Dnn)xxWK > }n (D )xan2{< > } +n(n_1)( wn)xx:“'nn 2
— o ({(e)"}" = {(e)*}") (Bla) o (an = ) (BSo)
9 1o 9 These equations can be solved sequentially, starting with
€uPo §{<C“’> } + {<Vﬁ>w}&{<%> } moments of order zero. All calculations presented below
;2 have been performed within SCIENTIFIC WORK-
_ (DZZ)XXF{@OLO}@ + ( **)XXt? 2{<Cn>n}n PLACE™ using the MAPLE® library.

—a" ({(c.)"}" = {{c,))"}") (B1b)
Moments of order
We consider the special case of an infinite medium with the

following boundary condition: The set of differential equations to be solved is
lim "=0and lim{{c )*'“=0 B2 Em .
X—>+°°{< > } X—>+°°{< > } ( ) €,Pn 8’:0: —a (:u'n,o_:uw,o) (B?a)
along with a similar condition for all derivatives of the
concentrations. We adopt the following change of iy 0 ¥
variable: €wPuw T = -« (M’w,O - M’T],O) (B7b)
X=x—V,t/{e} (B3) and the general solution is given by
so that eqns (B1) takes the form {e}py,0=€;099y,0 + €uPuba,0

oty + ({(v), } - 22 ) ey vor( et 19

. 82 X (Ew‘pwg ,0™ fw‘ngw,O) (88@
= (Ot (67} + (D)t (€ "
_a*({<cn>n}n_{<cw>w}w) (B4a) {e}ﬂ'w,ozen¢ngn,0+ew§0wgw,0
+ exp( - a*t—{ ¢ )
Ny € Pn€aPu
8 w)w wrw'r w)w
€% a{<cw> } + ({<V,3>w} _€ Eoe} >8X{<Cw> } X (engo.,’gw,o—énqangn,o) (B8h)
whereg, o andg, o are the initial values. Adding eqns (B8),
= (D )XX8X2{<C Y1+ (D )XX8X2{< c,)"}’ we obtain the following result:
—a" ({{c,)*}* = {{c,)"}") (B4b) {e}hpo = e10qin,0 + €uPubta,0

We define the spatial moments associated with the = €070y, 0 T €09,00,0 = CONStant (B9)
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In addition, we get
€7Pnly,0 + €wPule,0

(e = Mo

I|m ,U,.qo— I|m Mwo—

(B10)

Moments of order 1

From eqgns (B6) we get

Pt ({), ) = 2 Yo
—ao (,U-n,l — M, 1)
2
:“'71,1)

~ ({a} -
Adding these two equations, we obtain

€1 Py
(B11a)

a,u'w, 1 Ew¢wvr

€uPuw ot

— " (1 — (B11b)

a:u'w, 1

I Iy, 1
o O
{5y = ot

- <{<vﬂ>"} B En?}vr>“” °

+ () - %)

The asymptotic behaviour is such that

(%) () 5%
+ () - 25 g

+ €u,¢0

(B12

(J)qu

(B13)

The reference velocity that makes the right-hand side of

this equation equal to zero is

Ve={(Ve), |+ {(Ve)u}

and we shall use this value fov, in the following
paragraphs.

Using symbolic calculus, we were able to obtain the
following limits:

(B14)

n‘pnfn + Ewwwfw

1 =g
€0 (V8)n | — €21 (Vs)u)
+ew¢wuo( { ’;}*{6};’ - ) (B159
. ety ety
,!I_r];lc Mw,l_ {6}
€oPu (V) [ — €091 (Va)o )
—fnwnuo< { Li{e};’ - ) (B15b)
where
fozzlj'a,l(tzo)! =170 (BlSC)

A. Ahmadi et al.

Moments of order 2

The governing equations for the moments of order 2 are

Iy 2 on Ve
n%n a7t7 22({<Vﬂ>ﬂ}_ 77{ 7]} )
+2( nn)xxl‘n 0+2( nw)xx:“'wo
— " (g2 — Pho,2) (B163)
a w w¥w
€wPu lgt’z <{< 5 }_w—):”'w,l
+ Z(wa)xxﬂw ot Z(Dwn)xxl‘n 0
— " (2= g.2) (B16b)

When these two equations are added, we obtain
a,u.z a,u'11,2 a,u'w,Z
1O s Pt M

=2[(D}) o+ (D) o b0

TI n

+2[( )xx+ (D:Z)xx]ﬂw,o
#2({Cuh} = 5 s
+2<{<V[3>w} - e“fe‘gvf)uw,l (B17)

The asymptotic limit is obtained by taking the limit of this
equation and using eqgns (B15) and (B10) to obtain

[(D:;)xx+ (Dj;;)xx_’_ (D;Z)xx+ (D:Z)xx] Ho

2
(ewpa{ V8, | —erer{(v8).})
2 .
o*{ e}
We are now in a position to conclude that the asymptotic

behaviour of the two-equation model can be represented by
a dispersion equation of the form

9 9 oy
(@ () = 00"

where the asymptotic dispersion coefficient is given by
(D;*)xx: [(D::)xx‘}' (Dj’;)xx"i_ (D:Z)xx"i_ (D::)xx]

2
<6w¢w{<vﬂ>n} - 6n¢n{<vﬁ>w})
+ —
o’{e}
One should note that this developmelttes notmake the

assumption that the initial conditions are similar for both
regions.

(e 22 3#2

1o (B18)

(B19)

(B20)
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