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In this paper we develop the two-equation model for solute transport and adsorption in
a two-region model of a mechanically and chemically heterogeneous porous medium.
The closure problem is derived and the coefficients in both the one- and two-equation
models are determined on the basis of the Darcy-scale parameters. Numerical
experiments are carried out for a stratified system at the aquifer scale, and the results
are compared with the one-equation model presented in Part IV and the two-equation
model developed in this paper. Good agreement between the two-equation model and
the numerical experiments is obtained. In addition, the two-equation model is used, in
conjunction with a moment analysis, to derive a one-equation, non-equilibrium model
that is valid in the asymptotic regime. Numerical results are used to identify the
asymptotic regime for the one-equation, non-equilibrium model.q 1998 Elsevier
Science Limited.
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NOMENCLATURE
agk ¼ Agk=Vj, interfacial area per unit volume, m¹1.
Agk ¼ area of theg–k interface contained in the

averaging volume,Vj, m2

Abj ¼ Ajb, area of theb–j interface contained in the
averaging volume,V , m2

Ahq ¼ Aqh, area of the boundary between theh and
q-regions contained with the large-scale averag-
ing volume,V`, m2

bhh vector field that maps=f〈ch〉hgh onto c̃h, m.
bhq vector field that maps=f〈cq〉qgq onto c̃h, m.
bqq vector field that maps=f〈cq〉qgq onto c̃q, m.
bqh vector field that maps=〈ch〉hgh onto c̃q, m.
cg point concentration in theg-phase, mol m¹3.
〈ch〉h Darcy-scale intrinsic average concentration for

theb–j system in theh-region, mol m¹3.
〈cq〉q Darcy-scale intrinsic average concentration for

theb–j system in theq-region, mol m¹3.

f〈ch〉hg h-region superficial average concentration,
mol m¹3.

f〈ch〉hgh ¼ J¹ 1
h f〈ch〉hg, h-region intrinsic average concen-

tration, mol m¹3.
{ 〈c〉} ¼ Jhf〈ch〉hgh þ Jqf〈cq〉qgq, large-scale intrinsic

average concentration, mol m¹3.
c̃h ¼ ch〉h ¹ f〈ch〉h


 	h, spatial deviation concentra-
tion for theh-region, mol m¹3.

f〈cq〉qg q-region superficial average concentration,
mol m¹3.

f〈cq〉qgq ¼ J¹ 1
q f〈cq〉qg, q-region intrinsic average

concentration, mol m¹3.
c̃q ¼ cq〉q ¹ f〈cq〉q
 	q, spatial deviation concentra-

tion for theq-region, mol m¹3.
Dp

h dispersion tensor for theb–j system in the
h-region, m2s¹1.

Dp
q dispersion tensor for theb–j system in the

q-region, m2s¹1.
Dpp

hh dominant dispersion tensor for theh-region trans-
port equation, m2s¹1.
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Dpp
hq coupling dispersion tensor for theh-region trans-

port equation, m2s¹1.
Dpp

qq dominant dispersion tensor for theq-region trans-
port equation, m2s¹1.

Dpp
qh coupling dispersion tensor for theq-region trans-

port equation, m2s¹1.
Dpp large-scale, one-equation model dispersion

tensor, m2s¹1.
g gravitational acceleration vector, m s¹2.
g magnitude of the gravitational acceleration

vector, m s¹2.
I unit tensor
Keq ¼ ]F =]cg ¼ ]F =]〈cg〉g, adsorption equilibrium

coefficient, m.
K ¼ agkKeq/eg, dimensionless adsorption equilib-

rium coefficient for thej-region.
K h ¼ (ejagk)h=ehÿ]F =]〈ch〉h

�
, dimensionless equilib-

rium coefficient for theh-region.
Kq ¼ (ejagk)q=eqÿ]F =]〈cq〉q�

, dimensionless equilib-
rium coefficient for theq-region.

, i i ¼ 1,2,3, lattice vectors, m.
,h length scale for theh-region, m.
,q length scale for theq-region, m.
Lc length scale for the region averaged concentra-

tions, m.
L aquifer length scale, m.
LH length scale of the aquifer heterogeneities, m.
nhq ¼ ¹ nqh, unit normal vector directed from the

h-region towards theq-region.
r j radius of the averaging volume,Vj, for the

j-region, m.
r o radius of the averaging volume,V , for the b–j

system, m.
r h scalar that mapsf〈cq〉qgq ¹ f〈ch〉hgh onto c̃h.
r q scalar that mapsf〈cq〉qgq ¹ f〈ch〉hgh onto c̃q.
Ro radius of the averaging volume,V `, for theh–q

system, m.
t time, s.
〈vb〉h Darcy-scale, superficial average velocity in the

h-region, m s¹1.
f〈vb〉hgh intrinsic regional average velocity in theh-region,

m s¹1.
f〈vb〉hg ¼ Jhf〈vb〉hgh, superficial regional average

velocity in theh-region, m s¹1.
ṽbh ¼ 〈vb〉h ¹ f〈vb〉hgh, h-region spatial deviation

velocity, m s¹1.
〈vb〉q Darcy-scale, superficial average velocity in the

q-region, m s¹1.
f〈vb〉qgq intrinsic regional average velocity in theq-region,

m s¹1.
f〈vb〉qg ¼ Jqf〈vb〉qgq, superficial regional average

velocity in theq-region, m s¹1.
ṽbq ¼ 〈vb〉q ¹f〈vb〉qgq, q-region spatial deviation

velocity, m s¹1.
f〈vb〉g ¼ Jhf〈vb〉hgh þ Jqf〈vb〉qgq, large-scale,

superficial average velocity, m s¹1.

Vh volume of theh-region contained in the averaging
volume,V `, m3.

Vq volume of theq-region contained in the averaging
volume,V `, m3.

V` large-scale averaging volume for theh–q system,
m3.

Greek symbols

a* mass exchange coefficient for theh–q

system, s¹1.
e ¼ eb þ ejeg, total porosity for theb–j

system.
eh ¼ ebh þ (ejeg)h, total porosity for theh-

region.
eq ¼ ebq þ (ejeg)q, total porosity for theq-’“n.

{ e} ¼ Jheh þ Jqeq, large-scale average porosity.
{ e} ð1þ { K } Þ ¼ ehð1þ K hÞJh þ eqð1þ KqÞJq, large-scale

average capacitance factor.
Jh ¼ 1 ¹ Jq, volume fraction of theh-region.
Jq ¼ 1 ¹ Jh, volume fraction of theq-region.

1 INTRODUCTION

Dispersion in heterogeneous media has received a great
deal of attention from a variety of scientists who are con-
cerned with mass transport in geological formations. It is
commonly accepted that dispersion through natural systems
such as aquifers and reservoirs involves many different
length scales, from the pore scale to the field scale. If one
considers the solute transport in such formations, these
multiple scales may lead to anomalous and non-Fickian
dispersion at the field scale.1–4 Here we need to be precise
and note thatanomalous dispersionrefers to the interpre-
tation of field-scale data that does not fit the response of
a field-scale homogeneous representation. Similarly, the
existence of multiple scales has been related to the observa-
tion that dispersivity is field-scale dependent (see a review
by Gelhar et al.5), and the theoretical implications of
this idea have been discussed extensively.6,7 Clearly, a
field-scale description calls for a representation in terms
of a heterogeneous domain, and we adopt this point of
view in this paper.

1.1 Hierarchical systems

A schematic representation of the problem under considera-
tion is illustrated in Fig. 1. While many intermediate scales
could be incorporated into the analysis, this study is limited
to four typical scales that can be described as follows:
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1. the macropore scale, in which averaging takes place
over the volumeVj;

2. the Darcy scale, in which averaging takes place over
the volumeV ;

3. the local heterogeneity scale, in which averaging
takes place over the volumeV`;

4. the reservoir- or aquifer-scale heterogeneities, which
have been identified by the length scaleLH in Fig. 1;
no averaging volume has been associated with this
length scale since the governing equations will be
solved numerically at this scale.

As we suggested in Part IV8, many applications will
require the addition of a micropore scale when the
k-region illustrated in Fig. 1 contains micropores, and
many realistic systems may contain other intermediate
length scales either within theb–j system or within the
heterogeneities associated with the averaging volumeV`.
When these length scales are disparate, the method of
volume averaging can be used to carry information about
the physical processes from a smaller length scale to a
larger one, and eventually to the scale at which the final
analysis is performed. When the length scales are not

disparate, one is confronted with the problem of evolving
heterogeneities.4

In this study we assume that the macropore scale,
the Darcy scale and the local heterogeneity scale are con-
veniently separated. This assumption was also imposed on
the analysis presented in Part IV8, and there it led to a
Darcy-scale representation of the dispersion process. The
analysis required, among other constraints, that

,k, ,g p rj p ,b, ,j p ro p ,h, ,q (1)

In the multiple-scale problem under consideration in this
paper, Darcy-scale properties are point-dependent, and
there is a need for a large-scale description. It is generally
assumed9,10 that local heterogeneity-scale permeability
variations are ‘stationary’. In other words, gradients of
the large-scale averaged quantities, which are characteristic
of the regional variations, may be assumed to have negli-
gible impact on the change-of-scale problem for character-
istic lengths equivalent to the large-scale averaging volume
represented by the subscript̀ in Fig. 1. Based on this
assumption, and provided that the following length-scale
constraints are satisfied:

,h, ,q p Ro p LH # L (2)

there is some possibility that a large-scale description exists
for the large-scale dispersion process. Here, we mention
thepossibleexistence of an averaged description to remind
the reader that process-dependent scales are involved in the
analysis, and this may lead to conditions that do not permit
the development of closed-form volume-averaged transport
equations.

Within this framework, we indicated in Part IV8 how a
local heterogeneity-scale equilibrium dispersion equation

Fig. 1. Averaging volumes in a hierarchical porous medium.

Fig. 2. Two-region model of a heterogeneous porous medium.
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could be derived from the Darcy-scale problem provided
that certain length and time scales constraints were fulfilled.
In this paper,we remove these latter constraints, and we
present an analysis leading to a large-scale, non-equilibrium
model for solute dispersion in heterogeneous porous media.
The removal of these constraints naturally leads to a better
description of the process, and this is clearly demonstrated
in our comparison between theory and numerical
experiments. The penalty that one pays for this improved
description is the increased number of effective coefficients
that appear in the two-equation model. If laboratory
experiments are required in order to determine these
additional coefficients, one is confronted with an extremely
difficult task; however, in our theoretical development all
the coefficients can be determined on the basis of a single,
representative unit cell. This means that all the coef-
ficients in the large-scale averaged equations are self-
consistent and based on a single model of the local
heterogeneities.

The large-scale model that results from our analysis
features large-scale properties which are point-dependent
with a characteristic length scale,LH, describing the
regional heterogeneities. These regional heterogeneities
are incorporated into any field-scale numerical description.
They will certainly contribute to anomalous, non-Fickian
field-scale behaviour, but this behaviour will be taken care
of by the field-scale calculations and the large-scale
averaged transport equations.

1.2 Large-scale averaging

Within this multiple-scale scheme, we focus our attention
on the large-scale averaging volume illustrated in Fig. 2 and
thus restrict the analysis to a two-region model of a hetero-
geneous porous medium. It is important to understand that
the general theory is easily extended to systems containing
many distinct regions, and an example of this is given by
Ahmadi and Quintard11. Systems of the type illustrated in
Fig. 2 are characterized by an intense advection in the more
permeable region, while a more diffusive process takes
place in the less permeable region. Observations of many
similar systems, often referred to as systems with stagnant
regions or mobile–immobile regions, have been reported in
the literature (see reviews12,13). The expected large-scale
behaviour is characterized by large-scale dispersion with
retardation caused by the exchange of mass between the
different zones. Models proposed for describing solute
transport in such cases correspond to the introduction of a
retardation factor in thedispersionequation,oratwo-equation
model for the mobile and immobile regions14–21(see also the
reviews cited above12,13). Extensions of these models have
been proposed for mobile water in both regions (Skoppet
al.22, for thecaseofsmall interactionbetween the tworegions,
and Gerke and van Genuchten23). In the paper by Gerke and
van Genuchten, the solute inter-porosity exchange term is
related intuitively to the water inter-porosity exchange

term, i.e. in the case of local mechanical non-equilibrium,
and to an estimate of the diffusive part that resembles
previously proposed estimates in the case of mobile–
immobile systems. It should be noted that the model of
Gerke and van Genuchten23 accounts for variably
saturated porous media, a case that is beyond the scope
of this paper.

In this paper, we propose a general formulation of these
two-equation models using the method of large-scale
averaging. We obtain anexplicit relationship between
the local scale structure and the large-scale equations,
suitable for predictions of large-scale properties, which
incorporates both coupled dispersive and diffusive
contributions. Finally, this methodology is illustrated in
the case of dispersion in a stratified system for which
we compare the theory both with numerical experiments
and with the non-equilibrium, one-equation model of
Marle et al.24

The Darcy-scale process of solute transport with adsorp-
tion in theh–q system shown in Fig. 2 is given by

eh 1þ Kh

ÿ � ] ch


 �h
]t

þ =· vb


 �
h ch


 �h� �
¼ =· Dp

h·= ch


 �hÿ �
ð3Þ

B:C:1 ch


 �h
¼ cq


 �q, at Ahq (4)

B:C:2 ¹ nhq· vb


 �
h ch


 �h
¹ Dp

h·= ch


 �h� �
¼ ¹ nhq· vb


 �
q cq


 �q
¹ Dp

q·= cq


 �qÿ �
,

at Ahq ð5Þ

eq 1þ Kq

ÿ � ] cq


 �q
]t

þ =· vb


 �
q cq


 �qÿ �
¼ =· Dp

q·= cq


 �qÿ �
(6)

Here K h and Kq represent the Darcy-scale equilibrium
adsorption coefficients, which may be non-linear functions
of the concentrations,〈ch〉h and 〈cq〉q. In addition to the
solute transport equations, we shall need to make use of
the two Darcy-scale continuity equations that take the
form

=· vb


 �
h ¼ 0 (7a)

=· vb


 �
q ¼ 0 (7b)

along with the boundary condition for the normal compo-
nent of the velocity, which is given by25,26

B:C:3 nhq· vb


 �
h ¼ nhq· vb


 �
q, at Ahq (8)

In Part IV8 the region-average transport equations were
developed, and thesuperficialaverage forms are given by
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h-region:

q-region:

In our study of the one-equation model presented in Part
IV, we made use of the single, large-scale continuity
equation; however, in the analysis of mass transport
processes using the two-equation model, we shall need the
regional forms of the two continuity equations. These can
be expressed as:

h-region:

=·f vb


 �
hg þ

1
V `

∫
Ahq

nhq· vb


 �
h dA¼ 0 (10a)

q-region:

=·f vb


 �
qg þ

1
V`

∫
Aqh

nqh· vb


 �
q dA¼ 0 (10b)

Because the regional velocities are not solenoidal, as are
the Darcy-scale velocities contained in eqns (7), one must
take special care with the various forms of the regional
continuity equations.

In eqns (9), we see various large-scale terms such as
]
�

ch


 �h	h
=]t in eqn (9a) andJq

�
vb


 �
q

	q� cq


 �q	q in
eqn (9b), and we see other terms such asnhqc̃h andvbqc̃q

(9b)

(9a)
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that involve thespatial deviation quantities. In addition,
the inter-region flux is specified entirely in terms of the
Darcy-scale variablessuch as vb


 �
h and cq


 �q. In the fol-
lowing section we shall develop the closure problem which
will allow us to determine the diffusive terms such as�

D̃
p
h·=c̃h

	
and the dispersive terms such as̃vbqc̃q

� 	q.

More importantly, we shall develop a representation for
the inter-region flux that is determined entirely by the
closure problem. This means that the representation for
the inter-region flux is limited by all the simplifications
that are made in development of the closure problem.

2 CLOSURE PROBLEM

In the development of a one-equation model, one adds
eqns (9a) and (9b) to obtain a single transport equation in
which the inter-region flux terms cancel. In that case, the
closure problem is used only to determine the effective
coefficients associated with diffusion and dispersion. For
the two-equation model under consideration here, the
closure problem completely determines thefunctional
form of the inter-region flux and the effective coefficients
which appear in the representation of that flux. Closure
problems can be developed in a relatively general manner;
however, the development of alocal closure problem
requires the use of a spatially periodic model. This means
that some very specific simplifications will be imposed on
our representation for the inter-region flux and for the large-
scale dispersion; however, these simplifications are not
imposed on the other terms in eqns (9a) and (9b).

2.1 Inter-region flux

In the development of a two-equation model, we need
to represent the inter-region flux terms in a useful form,
and this means decomposing that flux into large-scale
quantities and spatial deviation quantities. Directing our
attention to theh-region transport equation, we make use
of the decomposition

ch


 �h
¼
�

ch


 �h	h
þ c̃h (11)

in order to express the inter-region flux as

1
V`

∫
Ahq

nhq· vb


 �
h ch


 �h
¹ Dp

h·= ch


 �h� �
dA

¼
1

V`

∫
Ahq

nhq· vb


 �
h ch


 �h� 	
¹ Dp

h·=f ch


 �h
gh

� �
dA

þ
1

V`

∫
Ahq

nhq· vb


 �
hc̃h ¹ Dp

h·=c̃h

� �
dA ð12Þ

The second term on the right-hand side of this result is in a
convenient form for use with eqn (9a) since the unit cell
closure calculations will provide us with values for both
〈vb〉h andDp

h; however, we need to consider carefully how
we treat the first term. In the derivation of eqn (9a) we
made use of the following decomposition for the dispersion

tensor:

Dp
h ¼ Dp

h

� 	h
þ D̃

p
h (13)

When this decomposition is used with eqn (12), we can
express the first term on the right-hand side as

1
V`

∫
Ahq

nhq· 〈vb〉hf〈ch〉h
ÿ 	h

¹ Dp
h·=f〈ch〉hghÞ dA¼

1
V`

∫
Ahq

nhq·
�
〈vb〉hf〈ch〉hgh ¹ Dp

h

� 	h·=f〈ch〉hgh

þ D̃
p
h·=f〈ch〉hgh

�
dA ð14Þ

The large-scale averaged quantities can be removed from
the first two terms on the right-hand side of eqn (14); how-
ever, we shall leave the gradient of the large-scale average
concentration inside the third term to obtain

1
V`

∫
Ahq

nhq· 〈vb〉hf〈ch〉h
ÿ 	h

¹ Dp
h·=f〈ch〉hghÞ dA

¼
1

V`

∫
Ahq

nhq·〈vb〉h dA

� �
f〈ch〉hgh

¹
1

V `

∫
Ahq

nhq dA

� �
· Dp

h

� 	h·=f〈ch〉hgh

¹
1

V `

∫
Ahq

nhq·D̃
p
h·=f〈ch〉hgh dA

� �
ð15Þ

One can show that the first term on the right-hand side
of this result is zero for a spatially periodic system.
This occurs because the periodicity condition for the
velocity,

Periodicity : vb


 �
h(r þ ,i) ¼ vb


 �
h(r ), i ¼ 1,2,3

(16)

allows us to write

1
V`

∫
Ahq

nhq· vb


 �
h dA¼

1
V `

∫
Ahq

nhq· vb


 �
h dA

þ
1

V`

∫
Ahe

nhe· vb


 �
h dA ð17Þ

in which Ahe represents the area of entrances and exits for
the h-region contained in a unit cell of a spatially periodic
porous medium. Use of the divergence theorem and eqn (7)
allows us to express eqn (17) as

1
V`

∫
Ahq

nhq· vb


 �
h dA¼

1
V `

∫
Vh

=· vb


 �
h dV ¼ 0 (18)

and use of this result with eqn (15) leads to the form

1
V`

∫
Ahq

nhq· vb


 �
h ch


 �h� 	h
¹ Dp

h·= ch


 �h� 	h
� �

dA

¼ ¹
1

V`

∫
Ahq

nhq dA

� �
· Dp

h

� 	h·=
�

ch


 �h	h

¹
1

V `

∫
Ahq

nhq·D̃
p
h·=
�

ch


 �h	h dA

� �
ð19Þ

Considering the first term on the right-hand side of this
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result, we make use of the averaging theorem to obtain

¹
1

V`

∫
Ahq

nhq dA

� �
· Dp

h

� 	h·= ch


 �h
gh

¼ =Jh· Dp
h

� 	h·= ch


 �h� 	h
ð20Þ

For a spatially periodic system,=Jh is zero and eqn (20)
allows us to express eqn (19) as

1
V`

∫
Ahq

nhq· vb


 �
h ch


 �h� 	h
¹ Dp

h·= ch


 �h� 	h
� �

dA

¼ ¹
1

V `

∫
Ahq

nhq·D̃
p
h·= ch


 �h� 	h dA

� �
ð21Þ

We are now ready to return to eqn (12) and express that

inter-region flux according to

1
V`

∫
Ahq

nhq· vb


 �
h ch


 �h
¹ Dp

h·= ch


 �h� �
dA

¼
1

V`

∫
Ahq

nhq· vb


 �
hc̃h ¹ Dp

h·=c̃h ¹ D̃
p
h·= ch


 �h� 	h
� �

dA

ð22Þ

Substitution of this result into eqn (9a) leads to a form of
the large-scale average transport equation that is ready to
receive results from the closure problem.

h-region:

Here we should note that every term in this result is either
a large-scale average quantity or a spatial deviation
quantity except for the Darcy-scale velocity,〈vb〉h. This
Darcy-scale quantity has not been decomposed like all
the other terms, because it will be available to us directly
by solution of the Darcy-scale mass and momentum
equations for a unit cell in a spatially periodic model of
a heterogeneous porous medium. The analogous result
for the q-region can be obtained from eqn (9b) and is
given by
q-region:

(23a)

(23b)
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In order to evaluate the terms in eqns (23a) and (23b)
that contain the spatial deviation concentrations, we need
to develop the closure problem forc̃h and c̃q. The govern-
ing differential equation for̃ch can be obtained by subtract-
ing the intrinsic form of eqn (23a) from the Darcy-scale
equation for〈ch〉h that is given by eqn (3). We develop the
intrinsic form of eqn (23a) by dividing that result byJh,
and this leads to a rather complicated result. However, prior
studies27,28 clearly indicate that it is an acceptable approx-
imation to ignore variations of the volume fraction,Jh, in
the development of the closure problem, and this means that
the intrinsic form of eqn (23a) can be expressed as

eh 1þ Kh

ÿ � ] ch


 �h� 	h

]t
þ =· vb


 �
h

n oh
ch


 �h� 	h
h i

¼ =·

"
Dp

h

� 	h· = ch


 �h� 	h
þ

J¹ 1
h

V`

∫
Ahq

nhqc̃h dA

 !

þ D̃
p
h·=c̃h

n oh

#
¹ =· ṽbhc̃h

� 	hÿ �
¹

J¹ 1
h

V `

∫
Ahq

nhq·
�

vb


 �
hc̃h ¹ Dp

h·=c̃h

¹ D̃
p
h·= ch


 �h� 	h
�

dA ð24Þ

Subtraction of this result from eqn (3) leads to

eh 1þ Kh

ÿ � ]c̃h

]t
þ =· vb


 �
h ch


 �h
¹ vb


 �
h

n oh
ch


 �h� 	h
� �

¼ =· Dp
h·= ch


 �h
¹ Dp

h

� 	h·=f ch


 �hÿ 	h�
¹ =·

J¹ 1
h Dp

h

� 	h

V`

∫
Ahq

nhqc̃h dAþ D̃
p
h·=c̃h

n oh

" #

þ =· ṽbhc̃h

� 	h
þ

J¹ 1
h

V`

∫
Ahq

nhq·
�

vb


 �
hc̃h

¹ Dp
h·=c̃h ¹ D̃

p
h·= ch


 �h� 	h
�

dA ð25Þ

Directing our attention to the convective transport term
in eqn (25), we make use of the velocity decomposition
given by

vb


 �
h ¼ vb


 �
h

n oh
þ ṽbh (26)

to obtain

vb


 �
h ch


 �h
¹ vb


 �
h

n oh
ch


 �h� 	h
¼ vb


 �
hc̃hþṽbh ch


 �h� 	h

(27)

Within the framework of the closure problem, we can use
eqns (10) and (18) to obtain

=· vb


 �
h

n o
¼ 0 (28)

and since we are ignoring variations ofJh, the continuity
equation for the intrinsic regional average velocity takes
the form

=· vb


 �
h

n oh
¼ 0 (29)

This result, along with the continuity equation given by
eqn (7a) and the decomposition given by eqn (26), can be
used to express the convective transport terms in eqn (25)
as

=· vb


 �
h ch


 �h
¹ vb


 �
h

n oh
ch


 �h� 	h
� �

¼ =· vb


 �
hc̃h

� �
þ ṽbh·= ch


 �h� 	h
ð30Þ

Use of the decomposition for the dispersion tensor given
by eqn (13) leads to the following representation for the
two dispersive fluxes:

Dp
h·= ch


 �h
¹ Dp

h

� 	h·= ch


 �h� 	h
¼Dp

h·=c̃hþD̃
p
h·= ch


 �h� 	h

(31)

When eqns (30) and (31) are used in eqn (25), our transport
equation for the spatial deviation concentration takes the
form

(32)
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As a final simplification of this closure problem, we make
use of the averaging theorem to write

=c̃h

� 	
¼ = c̃h

� 	
þ

1
V`

∫
Ahq

nhqc̃h dA (33)

and setting the average of the deviation equal to zero allows
us to express this result as

J¹ 1
h

V`

∫
Ahq

nhqc̃h dA¼ =c̃h

� 	h (34)

Multiplication by Dp
h

� 	h provides

J¹ 1
h Dp

h

� 	h

V`

·
∫

Ahq

nhqc̃h dA¼ Dp
h

� 	h·=c̃h

� 	h (35)

and this allows us to express eqn (32) in the slightly more
compact form given by

If we estimate the accumulation and diffusive terms
according to

eh 1þ Kh

ÿ � ]c̃h

]t
¼ O

eh 1þ Kh

ÿ �
c̃h

tp

� �
(37)

=· Dp
h·=c̃h

ÿ �
¼ O

Dp
hc̃h

,2
h

" #
(38)

the closure equation for̃ch will be quasi-steady when the
following constraint is satisfied:

Dp
ht

p

,2
heh 1þ K h

ÿ �q 1 (39)

This type of constrainthas already been imposed at both
the small scale and the Darcy scale, and it is not unreason-
able to impose it at the large scale, sinceDp

h will increase
with increasing values of,h. The convective transport
term and the large-scale dispersive transport term in
eqn (36) can be estimated according to

=· vb


 �
hc̃h

� �
¼ O vb


 �
hc̃h=,h

h i
(40)

=· ṽbhc̃h

� 	
¼ O vb


 �
hc̃h=Lc

h i
(41)

and this allows us to neglect the large-scale dispersive
transport whenever the length scales of the heterogeneities
are constrained by

,h, ,q p Lc (42)

Moving on to the diffusive terms, we keep eqn (38) in mind
and estimate the non-local term as

=· Dp
h·=c̃h

� 	
¼ O

Dp
hc̃h

Lc,h

� �
(43)

and we see that this term can also be neglected whenever
the constraint given by eqn (42) is satisfied.

On the basis of eqns (39) and (42) we shall simplify
the transport equation for̃ch to the following form:

(36)

(44)
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Here we note that our closure equation will be homogeneous
in c̃h if the gradient of the regional average concentration
is zero. For this reason we have identified the two terms
involving this gradient as thesourcesof the c̃h-field. An
analogous form can be derived for theq-region transport
equation, and the two will be connected by the interfacial
boundary conditions.

On the basis of eqns (4), (5) and (8), we see that the
boundary conditions take the form

B:C:1 ch


 �h
¼ cq


 �q, at Ahq (45)

B:C:2 nhq·Dp
h·= ch


 �h
¼ nhq·Dp

q·= cq


 �q, at Ahq (46)

and when we use the decompositions given by eqn (11), we
shall obtain the boundary conditions in terms of the desired
spatial deviation concentrations,c̃h and c̃q. This leads us
to the closure problem as follows.

2.2 Closure problem

Periodicity : c̃h(r þ ,i) ¼ c̃h(r ), c̃q(r þ ,i) ¼ c̃q(r ),

i ¼ 1,2,3 ð47eÞ

Average : c̃h

� 	h
¼ 0, c̃q

� 	q
¼ 0 ð47f Þ

Here it should be clear that all thesources, or the non-
homogeneous terms in this boundary value problem, can
be expressed in terms of the two concentration gradients
and the concentration difference, i.e.

Sources : = ch


 �h� 	h, = cq


 �q� 	q,

cq


 �q� 	q
¹ ch


 �h� 	hÿ �

(47a)

(47b)

(47c)

(47d)
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At this point we have replaced the original problem by a set
of large-scale averaged equations and a local-scale closure
problem involving the large-scale variables and the spatial
deviations. Our objective now is to obtain an approximate
solution of this problem. Following ideas developed in the
treatment of heat transfer in porous media27,29–32, or in
dealing with the flow of a slightly compressible fluid in a
heterogeneous porous medium33,34, this suggests
representations for the spatial deviation concentrations of
the form

c̃h ¼ bhh·= ch


 �h� 	h
þ bhq·= cq


 �q� 	q

þ rh cq


 �q� 	q
¹ ch


 �h� 	hÿ �
ð48aÞ

c̃q ¼ bqh·= ch


 �h� 	h
þ bqq·= cq


 �q� 	q

þ rq cq


 �q� 	q
¹ ch


 �h� 	hÿ �
ð48bÞ

in which we refer tobhh, bqh, rq, etc., as theclosure
variables. In terms of these closure variables, there are
three closure problems that result from eqns (47), and the
first of these is given by

Problem I

=· vb


 �
hbhh

� �
þ ṽbh ¼ =· Dp

h·=bhh

ÿ �
þ =·D̃

p
h ¹ J¹ 1

h chh

(49a)

B:C:1 bhh ¼ bqh at Ahq (49b)

B:C:2 nhq·Dp
h·=bhh þ nhq·Dp

h ¼ nhq·Dp
q·=bqh at Ahq

(49c)

=· vb


 �
qbqh

ÿ �
¼ =· Dp

q·=bqh

ÿ �
¹ J¹ 1

q cqh (49d)

Periodicity : bhh(r þ ,i) ¼ bhh(r ),

bqh(r þ ,i) ¼ bqh(r ), i ¼ 1,2,3 ð49eÞ

Average : bhh

� 	h
¼ 0, bqh

� 	q
¼ 0 (49f)

Here we have used the vectorschh andcqh to represent the
inter-region flux terms according to

chh ¼ ¹
1

V`

∫
Ahq

nhq· vb


 �
hbhh ¹ Dp

h·=bhh ¹ D̃
p
h

� �
dA

(50a)

cqh ¼ ¹
1

V`

∫
Aqh

nqh· vb


 �
qbqh ¹ Dp

q·=bqh

ÿ �
dA (50b)

and these are related by

chh ¼ ¹ cqh (50c)

The second closure problem is related to the source,
= cq


 �q� 	q, and it is given by

Problem II

=· vb


 �
hbhq

� �
¼ =· Dp

h·=bhq

ÿ �
¹ J¹ 1

h chq (51a)

B:C:1 bhq ¼ bqq, at Ahq (51b)

B:C:2 nhq·Dp
h·=bhq ¼ nhq·Dp

q·=bqq þ nhq·Dp
q at Ahq

(51c)

=· vb


 �
qbqq

ÿ �
þ ṽbq ¼ =· Dp

q·=bqq

ÿ �
þ =·D̃

p
q ¹ J¹ 1

q cqq

(51d)

Periodicity : bhq(r þ ,i) ¼ bhq(r ), bqq(r þ ,i) ¼ bqq(r ),

i ¼ 1, 2,3 ð51eÞ

Average : bhq

� 	h
¼ 0, bqq

� 	q
¼ 0 (51f)

In this case the two constant vectors are defined by

chq ¼ ¹
1

V `

∫
Ahq

nhq· vb


 �
hbhq ¹ Dp

h·=bhq

� �
dA (52a)

cqq ¼ ¹
1

V `

∫
Aqh

nqh· vb


 �
qbqq ¹ Dp

q·=bqq ¹ D̃
p
q

� �
dA

(52b)

and they are related by

chq ¼ ¹ cqq (52c)

The third closure problem originates with the exchange
source, cq


 �q� 	q
¹ ch


 �h� 	h, and it takes the form

Problem III

=· vb


 �
hrh

� �
¼ =· Dp

h·=rh

ÿ �
¹J¹ 1

h ap (53a)

B:C:1 rh ¼ rq þ 1, at Ahq (53b)

B:C:2 nhq·Dp
h·=rh ¼ nhq·Dp

q·=rq at Ahq (53c)

=· vb


 �
qrq

ÿ �
¼ =· Dp

q·=rq

ÿ �
þ J¹ 1

q ap (53d)

Periodicity : rh(r þ ,i) ¼ rh(r ), rq(r þ ,i) ¼ rq(r ),

i ¼ 1,2,3 ð53eÞ

Average : rh

� 	h
¼ 0, rq

� 	q
¼ 0 (53f)

Here the mass transfer coefficient,a*, is defined by

ap ¼ ¹
1

V`

∫
Ahq

nhq· vb


 �
hrh ¹ Dp

h·=rh

� �
dA

¼ þ
1

V`

∫
Aqh

nqh· vb


 �
qrq ¹ Dp

q·=rq

ÿ �
dA (54)
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Rather than work directly with the closure variables,r h and
r q, it is convenient to define new variables according to

sh ¼ rh, sq ¼ rq þ 1 (55)

in order to represent the closure problem for the exchange
coefficient in terms of a continuous closure variable. Under
these circumstances we express the third closure problem
as follows.

Problem III 9

=· vb


 �
hsh

� �
¼ =· Dp

h·=sh

ÿ �
¹ J¹ 1

h ap (56a)

B:C:1 sh ¼ sq, at Ahq (56b)

B:C:2 nhq·Dp
h·=sh ¼ nhq·Dp

q·=sq at Ahq (56c)

=· vb


 �
qsq

ÿ �
¼ =· Dp

q·=sq

ÿ �
þ J¹ 1

q ap (56d)

Periodicity : sh(r þ ,i) ¼ sh(r ), sq(r þ ,i) ¼ sq(r ),

i ¼ 1,2, 3 ð56eÞ

Average : sh

� 	h
¼ 0, sq

� 	q
¼ 1 (56f)

In this case the mass transfer coefficient takes the form

ap ¼ ¹
1

V`

∫
Ahq

nhq· vb


 �
hsh ¹ Dp

h·=sh

� �
dA (57)

These closure problems are similar to those that have
been solved previously by Quintard and Whitaker30,35,36,
Fabrieet al.37 and Quintardet al.32, and they can be used
to determine the coefficients that appear in both the two-
equation model and the one-equation model that was
developed in Part IV. The major difference between this
development and previously studied two-equation models
is associated with the spatial variations of the dispersion
tensors due to their dependence on velocity fluctuations.
As a consequence, new diffusive source terms appear in
the closure problem in the form of the divergence of the
deviation of the dispersion tensors. The derivation of
the closure problem for the one-equation, equilibrium
model is presented in Appendix A.

In order to develop the closed forms of eqn (23a), we
substitute the representation forc̃h given by eqn (48a) and
make use of the change of variable indicated by eqn (55) to

obtain

eh 1þ Kh

ÿ �
Jh

] ch


 �h� 	h

]t
þ =· Jh vb


 �
h

n oh
ch


 �h� 	h
h i

¹ =· dh ch


 �h� 	h
¹ cq


 �q� 	qÿ �� �
¹ uhh·= ch


 �h� 	h

¹ uhq·= cq


 �q� 	q
¼ =· Dpp

hh·= ch


 �h� 	hÿ �
þ =· Dpp

hq·= cq


 �q� 	qÿ �
¹ ap ch


 �h� 	h
¹ cq


 �q� 	qÿ �
ð58Þ

Here the various coefficients are defined by

dh ¼Jh ṽbhsh ¹ Dp
h·=sh

� 	h (59a)

uhh ¼ ¹
1

V `

∫
Ahq

nhq· vb


 �
hbhh ¹ Dp

h·=bhh ¹ D̃
p
h

� �
dA

(59b)

uhq ¼ ¹
1

V`

∫
Ahq

nhq· vb


 �
hbhq ¹ Dp

h·=bhq

� �
dA (59c)

Dpp
hh ¼ Jh Dp

h· I þ =bhh

ÿ �
¹ ṽbhbhh

� 	h (59d)

Dpp
hq ¼ Jh Dp

h·=bhq ¹ ṽbhbhq

� 	h (59e)

ap ¼ ¹
1

V`

∫
Ahq

nhq· vb


 �
hsh ¹ Dp

h·=sh

� �
dA (59f)

In order to obtain the closed form of theq-region transport
equation, we follow the above development from eqn (23b)
to arrive at

eq 1þ Kq

ÿ �
Jq

] cq


 �q� 	q

]t
þ =· Jq vb


 �
q

� 	q cq


 �q� 	q� �
¹ =· dq ch


 �q� 	q
¹ ch


 �h� 	hÿ �� �
¹ uqh·= ch


 �h� 	h

¹ uqq·= cq


 �q� 	q
¼ =· Dpp

qh·= ch


 �h� 	hÿ �
þ =· Dpp

qq·= cq


 �q� 	qÿ �
¹ ap cq


 �q� 	q
¹ ch


 �h� 	hÿ �
ð60Þ

The coefficients in this case are analogous to those given
by eqns (59), and for completeness we list them as

dq ¼Jq ṽbqsq ¹ Dp
q·=sq

� 	q (61a)

uqq ¹
1

V`

∫
Aqh

nqh· vb


 �
qbqq ¹ Dp

q·=bqq ¹ D̃
p
q

� �
dA

(61b)

uqh ¼ ¹
1

V`

∫
Aqh

nqh· vb


 �
qbqh ¹ Dp

q·=bqh

ÿ �
dA (61c)
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Dpp
qq ¼ Jq Dp

q· I þ =bqq

ÿ �
¹ ṽbqbqq

� 	q (61d)

Dpp
qh ¼ Jq Dp

q·=bqh ¹ ṽbqbqh

� 	q (61e)

ap ¼ ¹
1

V`

∫
Aqh

nqh· vb


 �
qsq ¹ Dp

q·=sq

ÿ �
dA (61f)

In the next section we shall present results for the coeffi-
cients given by eqns (59) and (61).

The large-scale equations, eqns (58) and (60), represent a
generalized version of two-equation models for describing
dispersion and adsorption in such systems, and it is interest-
ing to discuss the theoretical status of the linear mass
exchange term in these equations. On the basis of the
assumptions we have made, the concentration deviations
given by eqns (48), coupled with the Darcy-scale problem
given by eqns (47), represent a simplified closure scheme
for the large-scale averaged equations associated with theh-
and q-regions. A general solution would involve a more
complicated expression for the exchange between the two
effective media, and the retention of the transient form of
the closure problem38. In the next section we test the present
theory versus numerical experiments obtained for the case
of stratified systems.

3 NUMERICAL EXPERIMENTS FOR STRATIFIED
SYSTEMS

In this section, we present a complete analysis of the strati-
fied system illustrated in Fig. 3 in the absence of adsorption
effects. This system has a behaviour typical of the two-
region models that have been studied previously24,39–41,
while being simple enough to allow for precise analysis.
We first obtain Darcy-scale solutions that will serve as
numerical experiments for a comparison with theoretical
predictions.

3.1 Local problem

The local boundary value problem under investigation is
defined below.

eh

] ch


 �h
]t

þ =· vb


 �
h ch


 �h� �
¼ =· Dp

h·= ch


 �hÿ �
(62a)

=· vb


 �
h ¼ 0 (62b)

vb


 �
h ¼ ¹

Kbh

mb

· = pb


 �b
h ¹ %bg

� �
(62c)

B:C:1 nhq· vb


 �
h ¼ nhq· vb


 �
q, at Ahq (62d)

B:C:2 pb


 �b
h ¼ pb


 �b
q, at Ahq (62e)

B:C:3 ch


 �h
¼ cq


 �q, at Ahq (62f)

B:C:4 ¹ nhq· vb


 �
h ch


 �h
¹ Dp

h·= ch


 �h� �
¼ ¹ nhq· vb


 �
q cq


 �q
¹ Dp

q·= cq


 �qÿ �
, at Ahq

ð62gÞ

eq

] cq


 �q
]t

þ =· vb


 �
q cq


 �qÿ �
¼ =· Dp

q·= cq


 �qÿ �
(62h)

=· vb


 �
q ¼ 0 (62i)

vb


 �
q ¼ ¹

Kbq

mb

· = pb


 �b
q ¹ %bg

� �
(62j)

B:C:5 y¼ 0, H : n· vb


 �b
a ¼ 0; n· Dp

a·= ca


 �aÿ �
¼ 0;

a ¼ h,q ð62kÞ

B:C:6 x¼ 0 : pb


 �b
a ¼ %bg dh; ca


 �a
¼ 1; a ¼ h,q

(62l)

B:C:7 x¼ Lo : pb


 �b
a ¼ 0; n· Dp

a·= ca


 �aÿ �
¼ 0;

a ¼ h,q ð62mÞ

I:C: t ¼ 0 : ca


 �a
¼ 0, a ¼ h,q (62n)

Here we note that all the concentrations are now dimen-
sionless, so 〈ca〉a represents a concentration made
dimensionless by some reference concentration,co. The
solution of this boundary value problem is trivial in terms
of the velocity field, i.e. the velocities are constant in
each region. Consequently, the dispersion tensors are
constant in each region, and the closure problem can beFig. 3. Stratified model of a heterogeneous porous medium.
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simplified in the obvious manner. The two-dimensional con-
centration field was obtained by using the numerical model
MT3D42.

3.2 Closure problems and the large-scale problem

Analytical solutions of the equations of closure problems I
and II above are readily obtained, and the associated large-
scale problem is one-dimensional. The equations are given
by

vb


 �
h

n oh
¼ i· vb


 �
h

n oh
¼ constant (63a)

ehJh

] ch


 �h� 	h

]t
þJh vb


 �
h

n oh ]

]x
ch


 �h� 	h

¼ Dpp
hh

ÿ �
xx

]2

]x2 ch


 �h� 	h
þ Dpp

hq

ÿ �
xx

]2

]x2 cq


 �q� 	q

¹ ap ch


 �h� 	h
¹ cq


 �q� 	qÿ �
ð63bÞ

eqJq

] cq


 �q� 	q

]t
þ Jq vb


 �
q

� 	q ]

]x
cq


 �q� 	q

¼ Dpp
qh

ÿ �
xx

]2

]x2 ch


 �h� 	h
þ Dpp

qq

ÿ �
xx

]2

]x2 cq


 �q� 	q

¹ ap cq


 �q� 	q
¹ ch


 �h� 	hÿ �
ð63cÞ

vb


 �
q

� 	q
¼ i· vb


 �
q

� 	q
¼ constant (63d)

A complete discussion of associated large-scale boundary
conditions is beyond the scope of this study, and we choose
the following initial and boundary conditions:

B:C:1 x¼ 0, ch


 �h� 	h
¼ cq


 �q� 	q
¼ 1 (64a)

B:C:2 x¼ Lo,
]

]x
ch


 �h� 	h
¼

]

]x
cq


 �q� 	q
¼ 0 (64b)

I:C: t ¼ 0, ch


 �h� 	h
¼ cq


 �q� 	q
¼ 0 (64c)

In eqns (63), effective properties for the one-dimensional
unit cell are given by

Dpp
hh

ÿ �
xx ¼ Jh Dp

h

ÿ �
xx (65a)

Dpp
hq

ÿ �
xx ¼ Dpp

qh

ÿ �
xx ¼ 0 (65b)

Dpp
qq

ÿ �
xx ¼ Jq Dp

q

ÿ �
xx (65c)

ap ¼
12

,h þ ,q

ÿ �2

Dp
h

ÿ �
yy Dp

q

ÿ �
yy

Jq Dp
h

ÿ �
yy þ Jh Dp

q

ÿ �
yy

(65d)

It is important to note at this point that the periodic system
representative of the problem expressed by eqns (62) is
constituted of layerstwice as largeas those represented
in Fig. 3, and we have used the appropriate unit cell asso-
ciated with this periodic system in deriving eqn (65).

3.3 Numerical methods

Numerical solutions of the large-scale, one-dimensional
problem are found by using the following procedure. First,
the operator in the transport equation is split into three
equations as shown here for theh-region equation:

ehJh

] ch


 �h� 	h

]t
þ Jh vb


 �
h

n oh ]

]x
ch


 �h� 	h
¼ 0 (66a)

ehJh

] ch


 �h� 	h

]t
¼ Dpp

hh

ÿ �
xx

]2

]x2 ch


 �h� 	h

þ Dpp
hq

ÿ �
xx

]2

]x2 cq


 �q� 	q
ð66bÞ

ehJh

] ch


 �h� 	h

]t
¼ ¹ ap ch


 �h� 	h
¹ cq


 �q� 	qÿ �
(66c)

Equations like eqn (66a) are solved by using an explicit
second-order scheme43,44, while diffusion equations like
eqn (66b) are solved by using a second-order implicit
scheme. Finally, eqn (66c) and the similar equation for
the q-region are solved analytically for one time-step.
The resulting scheme is second-order with negligible
numerical dispersion. Several cases were investigated ran-
ging from negligible dispersion effects to important disper-
sion effects.

3.3.1 Case 1.
The system properties for this case are summarized in
Table 1, and the concentrations fields obtained fort ¼ 8
3 10þ6 s are plotted in Fig. 4. This figure shows that advec-
tion in each stratum is the unique mechanism and that
there is no mass exchange between the strata. This type of
behaviour clearly calls for a large-scale, non-equilibrium
description. From this computed field we obtain ‘experi-
mental’ values for the large-scale averaged concentrations
by averaging over cross-sections of the stratified medium.
To obtain the theoretical results for this case, we first deter-
mine the effective properties for the two-equation model
by solving the three closure problems, and these values
are reported in Table 1. The one-dimensional, large-scale
equations are then solved numerically to provide the
theoretical concentrations that are plotted in Fig. 5. The
results show very good agreement between theory and
experiment, except for some limited numerical dispersion
near the fronts. To illustrate the need for a large-scale, non-
equilibrium approach, the average concentration corres-
ponding to the one-equation model is plotted in Fig. 5.
This curve obviously cannot be the solution of a classical
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advection, dispersion equation. While these results may
seem trivial, they emphasize that with a little additional
complexity, i.e. the introduction of a two-equation model,
it is possible to take into account mechanisms that would
require an extremely complicated one-equation model.

3.3.2 Case 2
The system properties for this case are summarized in
Table 2, and the concentration fields obtained fort ¼ 8 3
10þ6 s are plotted in Fig. 6. This figure shows that advection
in each strata is the most important mechanism, while some
cross-section diffusion is present, and this behaviour clearly

calls for a large-scale, non-equilibrium model. The fields
from the numerical experiments, the two-equation model
and the one-equation model are plotted in Fig. 7, and
there it is seen that the propagation of the front is consider-
ably faster in theh-region. Dispersion is negligible; how-
ever, mass transfer between the strata is not zero and has a
small influence on the concentration field in the region
between the fronts. The results indicate relatively good
agreement between the numerical experiments and theo-
retical calculations, especially for a case that has the reputa-
tion for not being ‘Fickian’ in terms of a one-equation
model. Mass exchange between the strata isunderestimated
by the theoretical model, and several explanations can be
proposed to explain this phenomenon. We list these as
follows:

1. Possible numerical inaccuracies must not be forgot-
ten; however, we think that numerical dispersion and

Table 1. Properties of the stratified system (case 1)

Fig. 4. Concentration att ¼ 8 3 10þ6 s, case 1.
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accuracy cannot explain all the observed differences.
This remark is valid for all cases investigated in this
paper, and we shall not repeat this argument in the
next set of comments.

2. It has already been observed45 that the theory under-
estimates the exchanged flux at early times, while it
naturally provides better estimates as time increases.
This occurs because estimates of the concentration
fields provided by the closure problems correspond
to a fully establishedconcentration wave in the
medium. This is not the case in this particular simula-
tion, since there is only a fringe of the strata that is
affected by diffusion near the interface.

3.3.3 Case 3
This case corresponds to a system with higher dispersion
effects, and the flow properties are given in Table 3. The
concentration fields determined at the Darcy scale are
plotted in Fig. 8, and all large-scale fields are shown in
Fig. 9. The large-scale, one-equation behaviour is still
characteristic of non-Fickian behaviour, while the two-
equation model provides a first-order accurate description
of the system behaviour with a limited error. Here we should
reiterate that the closure problem given by eqns (51) through
(53) is not exact, and this is generally the case. For
especially simple systems, such as Stokes flow in a homo-
geneous, rigid porous medium, one can indeed develop
exact closure problems46–49; however, the problem under
consideration involves transient, convective transport in

heterogeneous porous media and the demands on the closure
problem are much greater.

3.3.4 Case 4
The concentration fields at the Darcy scale are shown in Fig.
10 and all large-scale fields in Fig. 11. This case corresponds
to much higher dispersion effects. As a result, mass
exchange between the strata is increased, and the entire
process is closer to large-scale equilibrium. As expected,
the difference between numerical experiments and theoretical
predictions is small.

Finally, we have performed many numerical experiments
under conditions leading to a large-scale equilibrium
behaviour by increasing lateral dispersion. Under these
circumstances both the two-equation model and the one-
equation equilibrium model agree very well with the
numerical experiments. This behaviour was of course
expected.

4 ASYMPTOTIC BEHAVIOUR

In this section we are interested in the asymptotic behaviour
of the stratified system under consideration. In the absence
of any adsorption, it has been demonstrated by Marleet al.24

that for sufficiently large times the average concentration
obeys rather closely a dispersion equation given by

{ e}
]f ch ig

]t
þ vb


 �� 	 ]f ch ig

]x
¼ Dpp

`

ÿ �
xx

]2f ch ig

]x2 (67)

Fig. 5. Comparison between numerical experiments and 1D
large-scale predictions (t ¼ 8 3 10þ6 s, case 1).

Fig. 6. Concentration att ¼ 8 3 10þ6 s (case 2).

Fig. 7. Comparison between numerical experiments and 1D
large-scale predictions (t ¼ 8 3 10þ6 s, case 2).

Fig. 8. Concentration att ¼ 8 3 10þ6 s (case 3).
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The dispersion coefficient in this equation is given by
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The derivation of this result makes use of the method of
moments in a manner similar to the work of Aris50, and
these results have been extended to more general, random
stratified systems1,51. The estimate of the large-scale
asymptotic dispersion coefficient given by eqn (68) was
found to agree very well with experimental data24. The
one-equation model that was derived in Part IV has exactly
the same form as eqn (67), when there is no adsorption, and

this is given by

{ e}
]{ ch i}

]t
þ vb


 �� 	 ]{ ch i}
]x

¼ Dpp
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xx
]2{ ch i}

]x2 (69)

This equation is restricted by the approximation

ch


 �h� 	h
¼ cq


 �q� 	q
¼ c

 �� 	

,

large¹ scale mass equilibrium ð70Þ

and the predicted dispersion coefficient takes the form

Dpp
ÿ �

xx ¼ Jh Dp
h

ÿ �
xx þ Jq Dp

q

ÿ �
xx (71)

This relation issignificantly differentfrom the dispersion
coefficient represented by eqn (68), which is determined by
requiring that the moments of eqn (67) match the moments
of the particular process under consideration. While Marle
et al.24 obtained rather good agreement between theory and

Table 2. Properties of the stratified system (case 2)
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experiment for the case ofpassive dispersionin a stratified
system, it would be a mistake to modify eqn (67) with a
retardation factor such as 1þ { K }ð Þ and expect it to
represent accurately an adsorption process.

In order to compare our work with eqns (67) and (68), we
studied a stratified system, having essentially an infinite
length, that was subjected to a step change in the input
concentration. Thus we again used eqns (63) through (65)
with the lengthLo great enough for the downstream bound-
ary condition to have no effect on the concentration profiles.
The physical parameters were taken to be the same as
those used in Case 4, so they are given in Table 4 with
the exception ofLo/,h, which was of the order of 100.
The concentration profiles at a distance of 20 m from the
entrance are shown in Fig. 12, from which are seen a
variety of different results. The one-equation equilibrium
model that is characterized by eqns (69)–(71) clearly

exhibits a lack of dispersion compared with the one-
equation non-equilibrium model of Marleet al.24. The
results from the two-equation model indicate that the
concentration profile for theq-region lies below that
for the h-region, and this is required since the velocity
in the q-region is a factor of tenless thanthe velocity in
the h-region. At the leading edge of the front, the results
from the two-equation model bracket the value predicted
by eqns (67) and (68), while at the trailing edge of the
front, the non-equilibrium one-equation model of Marle
et al.24 clearly over-predicts the concentration. The average
concentration predicted by the two-equation model is given
by

{ 〈ci} ¼ Jh ch


 �h� 	h
þ Jq cq


 �q� 	q (72)

in which ch


 �h� 	h and cq


 �q� 	q are not constrainedby
eqn (70). We consider this average concentration to be the

Table 3. Properties of the stratified system (case 3)
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best predictor of the large-scale average concentration, and
this generally lies below the values predicted by eqns (67)
and (68). This means that the time and length-scale con-
straints that are imposed on eqns (67) and (68) are not
satisfied at a distance of 20 m for the conditions listed in
Table 4. The comparison is seen more clearly in Fig. 13,
where we present the time derivative of the concentration
profiles. These represent values of]{ 〈c〉}/ ]t, determined at a
distance of 20 m, as a function of time. These curves can
also be thought of as concentration profiles for a pulse input
condition, and they clearly indicate that eqns (67) and (68)
do not predict a symmetric pulse at a distance of 20 m.
When the distance is increased to 66.5 m, the agreement
between all the models improves significantly, and the
results for the concentration profiles are shown in Fig. 14.
The one-equation equilibrium model provides theworst
representation, while the two-equation model is in good
agreement with the work of Marleet al.24. The time deri-
vatives of the concentration profiles are shown in Fig. 15,
and there we see rather good agreement between the
average concentration determined on the basis of the two-
equation model and eqn (72) and the one-equation non-
equilibrium model given by eqns (67) and (68). On the
other hand, the one-equation equilibrium model developed
in Part IV illustrates rather poor agreement with the other
two results.

The direct study of the asymptotic behaviour of the two-
equation model is presented in Appendix B, where we show
analytically that the asymptotic longitudinal dispersion

coefficient is given by

Dpp
`

ÿ �
xx ¼ Dpp

hh

ÿ �
xx þ Dpp

hq

ÿ �
xx þ Dpp

qh

ÿ �
xx þ Dpp

qq

ÿ �
xx

þ
eqJq vb


 �
h

n o
¹ ehJh vb


 �
q

� 	� �2

ap ehJh þ eqJq
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Introducing the expression fora* given by eqn (73), we
obtain an expression for the asymptotic longitudinal disper-
sion coefficient equal to the one proposed by Marleet al.24.
This result suggests the following comments:

1. The two-equation model has an asymptotic behaviour
that reflects exactly the behaviour deduced from a
direct analysis of the Darcy-scale problem. Since
the two-equation model can be applied to more
general systems than stratified media, our result
represents an important extension of the theory.

2. The value of the asymptotic longitudinal dispersion
coefficient depends ona*. Therefore, the comparison
is a test of the validity of the large-scale closure
problem. We have presented in Parts I and II a
comparison with several estimates of the exchange
coefficient published in the literature for purely
diffusive problems. They may differ by as much as
a factor of 3. The comparison with the result by Marle
et al.24 shows that the proposed theory gives an exact
result.

5 CONCLUSIONS

In this paper we have introduced a first-order version of a
two-equation model describing a class of local non-
equilibrium dispersion problems in heterogeneous porous
media. A comparison with numerical experiments for

Fig. 9. Comparison between numerical experiments and 1D
large-scale predictions (t ¼ 8 3 10þ6 s, case 3).

Fig. 10. Concentration att ¼ 8 3 10þ6 s (case 4).

Fig. 11. Comparison between numerical experiments and 1D
large-scale predictions (t ¼ 8 3 10þ6 s, case 4).
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stratified systems has demonstrated the ability of the
two-equation model to describe most of the large-scale
non-equilibrium behaviour of such bimodal heterogeneous
systems. The agreement was found to be reasonable for a
wide range of large-scale Peclet numbers from negligible
diffusion/dispersion effects to dominant diffusion/
dispersion effects. In addition to the comparison with
numerical experiments, we have also compared our two-
equation model with the one-equation non-equilibrium
model developed by Marleet al.24 for the special case of
passive dispersionin a stratified system. The asymptotic
results are identical, and this represents a successful com-
parison with the laboratory experiments that were used by
Marleet al.24 as a test of their theory. At present there would
appear to be no laboratory experiments for the case of dis-
persion and adsorption in stratified systems; however, the

numerical experiments can be considered as a reliable veri-
fication of the essential features of the two-equation model.

An improved model could be achieved with the use of
higher-order, transient closure problems. On the other hand,
the improvement of the predictions of the two-equation
model over those available from the one-equation model
is significant, and may be sufficient for many practical
purposes. This is a matter of choice for a particular
application.

Although interest in two-equation models has long been
recognized in the literature, our contribution lies in the
introduction of the closure problems that give some reliable
link between the lower-scale and the upper-scale structures.
The development of numerical methods to solve the closure
problems in more general cases could be used in connection
with any deterministic or statistical representation of the

Table 4. Properties of the stratified system (case 4)
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heterogeneities, thus providing valuable tools for engineer-
ing purposes.

Finally, it must be pointed out that the development
presented in this paper is limited to solute transport
with negligible density variations and viscosity variations.
Gravity-induced gradients may have a significant

influence on the flow pattern41, and it is well known
that viscous fingering may develop when viscosity gra-
dients are important, thus affecting dramatically the con-
centration field. It is not clear at this point whether
these effects can be introduced into the analysis in a
simple manner.

Fig. 12. Asymptotic behaviour of the different large-scale models: concentration fields (case 4;x ¼ 20 m).

Fig. 13. Asymptotic behaviour of the different large-scale models: time derivative of the concentration fields (case 4;x ¼ 20 m).
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APPENDIX A: CLOSURE FOR THE ONE-EQUATION
MODEL

In Part IV we expressed the one-equation equilibrium
model as

{ e} 1 þ{ K }ð Þ
]{ ch i}

]t
þ=·

ÿ
vb


 �� 	
{ ch i}

�
¼=· Dpp·={ ch i}

�ÿ
(A1)

Fig. 14. Asymptotic behaviour of the different large-scale models: concentration fields (case 4;x ¼ 66.5 m).

Fig. 15. Asymptotic behaviour of the different large-scale models: time derivative of the concentration fields (case 4;x ¼ 66.5 m).
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in which the large-scale dispersion tensor is defined by
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In order to derive these two results from the two-equation
model presented in this paper, we first add eqns (58) and
(60) and impose the approximations
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Use of the definitions
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allows us to simplify this result to obtain the traditional
accumulation and convective transport term according to
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In order to determine the form of the overall dispersion
tensor, we recall the definitions of the four dispersion
tensors in the above equation, given by

Dpp
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These representations need to be arranged in a form that
will allow us to extract the relation given by eqn (A2), and
we begin this rearrangement with eqn (A8a) to obtain

Dpp
hh ¼ Jh Dp

h· I þ =bhh

ÿ �
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We can remove the regional average from the averaging

process to obtain
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and then use the averaging theorem in order to express this
term as
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Here we have ignored variations ofJh, since we are work-
ing with the equations of closure problems I and II above.
From eqn (49) we have

bhh

� 	h
¼ 0 (A12)

and so eqn (A10) takes the form

Dp
h

� 	h·=bhh

� 	h
¼ Dp

h

� 	h·
1
Vh

∫
Ahq

nhqbhh dA (A13)

Use of this result in eqn (A9) allows us to expressDpp
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which is more conveniently written as
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If we repeat this procedure with eqns (A8b), (A8c) and
(A8d), we obtain
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If we sum these four equations, we begin to obtain some-
thing that resembles the definition given by eqn (A2):
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and the resemblance becomes clearer when we make use of
the combined closure variables defined by

bh ¼ bhh þ bhq, bq ¼ bqh þ bqq (A17)

Use of these relations in eqn (A16) leads to
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At this point one need only recognize thatnqh ¼ ¹nhq and
make use of the two boundary conditions given by eqns (49)
and (51) to conclude that
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Use of this result with eqn (A7) provides the more compact
form of the one-equation model given by
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In order to calculate values of the dispersion tensor,D** ,
we need the closure problem that produces the closure
variablesbh and bq. On the basis of the definitions given
by eqn (A17) and the following definitions for the constants
in the two-equation model closure problems:

ch ¼ chh þ chq, cq ¼ cqh þ cqq (A21)

we can add eqns (49) and (51) to obtain
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þ ṽbh ¼ =· Dp

h·=bh

ÿ �
þ =·D̃

p
h ¹ J¹ 1

h ch

(A22a)

B:C:1 bh ¼ bq at Ahq (A22b)

B:C:2 nhq·Dp
h·=bh ¼ nhq·Dp

q·=bq

þ nhq· Dp
q ¹ Dp

h

ÿ �
at Ahq ðA22cÞ

=· vb


 �
qbq

ÿ �
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Periodicity : bh(r þ ,i) ¼ bh(r ), bq(r þ ,i) ¼ bq(r ),

i ¼ 1,2,3 ðA22eÞ
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At this point we are ready to move on to the non-traditional
convective transport terms in eqn (A20), and from eqns (59)
and (61) we have
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Use of the definitions of the closure variables given by eqn
(A17) allows us to add pairs of these equations to obtain

uhhþuhq ¼ ¹
1

V`

∫
Ahq

nhq· vb


 �
hbh ¹ Dp

h·=bh ¹ D̃
p
h

� �
dA

(A24a)

uqh þ uqq ¼ ¹
1

V`

∫
Aqh

nqh· vb


 �
qbq¹Dp

q·=bq¹D̃
p
q

� �
dA

(A24b)

On the basis of the boundary condition given by eqn (8):
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we can add eqns (A24a) and (A24b) to obtain

uhh þ uhq þ uqh þ uqq

¼
1

V`

∫
Ahq

nhq· Dp
h·=bh þ D̃

p
h

� �
dA

þ
1

V`

∫
Aqh

nqh· Dp
q·=bq þ D̃

p
q

� �
dA ðA26Þ

Integrating eqn (A22c) over the areaAhq indicates that the
two integrals in this result sum to zero:

uhh þ uhq þ uqh þ uqq ¼ 0 (A27)

so eqn (A20) simplifies to
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We refer to this form as the one-equation equilibrium
model, since it is based on the condition of large-scale
equilibrium.

APPENDIX B: MOMENT ANALYSIS OF THE
TWO-EQUATION MODEL

A complete analysis of the three-dimensional moments
associated with the two-equation model can be found in
Zanotti and Carbonell29. In this Appendix, we present a
similar analysis with the emphasis on the asymptotic
behaviour of the system as a whole, i.e. the average con-
centration for the two regions, in order to compare our
work with that of Marleet al.24.

We consider a one-dimensional, large-scale flow des-
cribed by the two-equation model given by
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We consider the special case of an infinite medium with the
following boundary condition:

lim
x→6`

ch


 �h� 	h
¼ 0 and lim

x→6`
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 �q� 	q
¼ 0 (B2)

along with a similar condition for all derivatives of the
concentrations. We adopt the following change of
variable:

X ¼ x¹ Vrt={ e} (B3)

so that eqns (B1) takes the form

ehJh

]

]t
ch


 �h� 	h
þ vb


 �
h

n o
¹

ehJhVr

{ e}

� �
]

]X
ch


 �h� 	h

¼ Dpp
hh

ÿ �
xx

]2

]X2 ch


 �h� 	h
þ Dpp

hq

ÿ �
xx

]2

]X2 cq


 �q� 	q

¹ ap ch


 �h� 	h
¹ cq


 �q� 	qÿ �
ðB4aÞ

eqJq

]

]t
cq


 �q� 	q
þ vb


 �
q

� 	
¹

eqJqVr

{ e}

� �
]

]X
cq


 �q� 	q

¼ Dpp
qq

ÿ �
xx

]2

]X2 cq


 �q� 	q
þ Dpp

qh

ÿ �
xx

]2

]X2 ch


 �h� 	h

¹ ap cq


 �q� 	q
¹ ch


 �h� 	hÿ �
ðB4bÞ

We define the spatial moments associated with the

concentration fields as

ma,n ¼

∫þ `

¹ `
Xn ca


 �a� 	a dX, a ¼ h,q (B5)

Multiplying eqns (B4) byXn and integrating by parts, we
obtain the following set of governing equations for the
moments:
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These equations can be solved sequentially, starting with
moments of order zero. All calculations presented below
have been performed within SCIENTIFIC WORK-
PLACEy using the MAPLEy library.

Moments of order

The set of differential equations to be solved is

ehJh
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¼ ¹ap mh,0 ¹ mq,0
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(B7a)

eqJq
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and the general solution is given by

{ e}mh,0 ¼ ehJhgh, 0 þ eqJqgq,0

þ exp ¹apt
{ e}

ehJheqJq
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{ e}mq,0 ¼ ehJhgh,0 þ eqJqgq, 0

þ exp ¹ apt
{ e}

ehJheqJq
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wheregh ,0 andgq ,0 are the initial values. Adding eqns (B8),
we obtain the following result:

{ e}mo ¼ ehJhmh,0 þ eqJqmq,0

¼ ehJhgh, 0 þ eqJqgq, 0 ¼ constant ðB9Þ
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In addition, we get

lim
t→`

mh,0 ¼ lim
t→`
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{ e}
¼mo

(B10)

Moments of order 1

From eqns (B6) we get
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Adding these two equations, we obtain
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The asymptotic behaviour is such that
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The reference velocity that makes the right-hand side of
this equation equal to zero is

Vr ¼ vb
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n o
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 �
q

� 	
(B14)

and we shall use this value forVr in the following
paragraphs.

Using symbolic calculus, we were able to obtain the
following limits:
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where

fa ¼ ma, 1(t ¼ 0), a ¼ h,q (B15c)

Moments of order 2

The governing equations for the moments of order 2 are
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When these two equations are added, we obtain
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The asymptotic limit is obtained by taking the limit of this
equation and using eqns (B15) and (B10) to obtain
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We are now in a position to conclude that the asymptotic
behaviour of the two-equation model can be represented by
a dispersion equation of the form
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where the asymptotic dispersion coefficient is given by
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One should note that this developmentdoes notmake the
assumption that the initial conditions are similar for both
regions.
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